ﻻ يوجد ملخص باللغة العربية
Single-phase photoionization equilibrium (PIE) models are often used to infer the underlying physical properties of galaxy halos probed in absorption with ions at different ionization potentials. To incorporate the effects of turbulence, we use the MAIHEM code to model an isotropic turbulent medium exposed to a redshift zero metagalactic UV background, while tracking the ionizations, recombinations, and species-by-species radiative cooling for a wide range of ions. By comparing observations and simulations over a wide range of turbulent velocities, densities, and metallicity with a Markov chain Monte Carlo technique, we find that MAIHEM models provide an equally good fit to the observed low-ionization species compared to PIE models, while reproducing at the same time high-ionization species such as ion{Si}{4} and ion{O}{6}. By including multiple phases, MAIHEM models favor a higher metallicity ($Z/Z_odot approx 40%$) for the circumgalactic medium compared to PIE models. Furthermore, all of the solutions require some amount of turbulence ($sigma_{rm 3D} geqslant 26 {rm km} {rm s}^{-1}$). Correlations between turbulence, metallicity, column density, and impact parameter are discussed alongside mechanisms that drive turbulence within the halo.
The circumgalactic medium (CGM) of nearby star-forming galaxies show clear indications of ion{O}{6} absorption accompanied by little to no ion{N}{5} absorption. This unusual spectral signature, accompanied by absorption from lower ionization state sp
The circumgalactic medium (CGM) of nearby star-forming galaxies shows clear indications of OVI absorption accompanied by little to no detectable NV absorption. This unusual spectral signature, accompanied by highly non-uniform absorption from lower i
Galaxies are surrounded by extended atmospheres, which are often called the circumgalactic medium (CGM) and are the least understood part of galactic ecosystems. The CGM serves as a reservoir of both diffuse, metal-poor gas accreted from the intergal
The cycling of baryons in and out of galaxies is what ultimately drives galaxy formation and evolution. The circumgalactic medium (CGM) represents the interface between the interstellar medium and the cosmic web, hence its properties are directly sha
This chapter presents a review of the current state of knowledge on the cool (T ~ 1e4 K) halo gas content around massive galaxies at z ~ 0.2-2. Over the last decade, significant progress has been made in characterizing the cool circumgalactic gas in