ﻻ يوجد ملخص باللغة العربية
In this paper, we consider a non-Bayesian sequential change detection based on the Cumulative Sum (CUSUM) algorithm employed by an energy harvesting sensor where the distributions before and after the change are assumed to be known. In a slotted discrete-time model, the sensor, exclusively powered by randomly available harvested energy, obtains a sample and computes the log-likelihood ratio of the two distributions if it has enough energy to sense and process a sample. If it does not have enough energy in a given slot, it waits until it harvests enough energy to perform the task in a future time slot. We derive asymptotic expressions for the expected detection delay (when a change actually occurs), and the asymptotic tail distribution of the run-length to a false alarm (when a change never happens). We show that when the average harvested energy ($bar H$) is greater than or equal to the energy required to sense and process a sample ($E_s$), standard existing asymptotic results for the CUSUM test apply since the energy storage level at the sensor is greater than $E_s$ after a sufficiently long time. However, when the $bar H < E_s$, the energy storage level can be modelled by a positive Harris recurrent Markov chain with a unique stationary distribution. Using asymptotic results from Markov random walk theory and associated nonlinear Markov renewal theory, we establish asymptotic expressions for the expected detection delay and asymptotic exponentiality of the tail distribution of the run-length to a false alarm in this non-trivial case. Numerical results are provided to support the theoretical results.
The problem of quickest change detection with communication rate constraints is studied. A network of wireless sensors with limited computation capability monitors the environment and sends observations to a fusion center via wireless channels. At an
The Byzantine distributed quickest change detection (BDQCD) is studied, where a fusion center monitors the occurrence of an abrupt event through a bunch of distributed sensors that may be compromised. We first consider the binary hypothesis case wher
The problem of quickest detection of a change in the mean of a sequence of independent observations is studied. The pre-change distribution is assumed to be stationary, while the post-change distributions are allowed to be non-stationary. The case wh
We study the problem of quickest detection of a change in the mean of an observation sequence, under the assumption that both the pre- and post-change distributions have bounded support. We first study the case where the pre-change distribution is kn
Intensive research on energy harvested sensor nodes with traditional battery powered devices has been driven by the challenges in achieving the stringent design goals of battery lifetime, information accuracy, transmission distance, and cost. This ch