ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron irradiation effects on superconductivity in PdTe$_2$: an application of a generalized Anderson theorem

363   0   0.0 ( 0 )
 نشر من قبل Peter P. Orth
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low temperature ($sim$ 20~K) electron irradiation with 2.5 MeV relativistic electrons was used to study the effect of controlled non-magnetic disorder on the normal and superconducting properties of the type-II Dirac semimetal PdTe$_2$. We report measurements of longitudinal and Hall resistivity, thermal conductivity and London penetration depth using tunnel-diode resonator technique for various irradiation doses. The normal state electrical resistivity follows Matthiessen rule with an increase of the residual resistivity at a rate of $sim$0.77$ mu Omega$cm/$(textrm{C}/textrm{cm}^2)$. London penetration depth and thermal conductivity results show that the superconducting state remains fully gapped. The superconducting transition temperature is suppressed at a non-zero rate that is about sixteen times slower than described by the Abrikosov-Gorkov dependence, applicable to magnetic impurity scattering in isotropic, single-band $s$-wave superconductors. To gain information about the gap structure and symmetry of the pairing state, we perform a detailed analysis of these experimental results based on insight from a generalized Anderson theorem for multi-band superconductors. This imposes quantitative constraints on the gap anisotropies for each of the possible pairing candidate states. We conclude that the most likely pairing candidate is an unconventional $A_{1g}^{+-}$ state. While we cannot exclude the conventional $A_{1g}^{++}$ and the triplet $A_{1u}$, we demonstrate that these states require additional assumptions about the orbital structure of the disorder potential to be consistent with our experimental results, e.g., a ratio of inter- to intra-band scattering for the singlet state significantly larger than one. Due to the generality of our theoretical framework, we think that it will also be useful for irradiation studies in other spin-orbit-coupled multi-orbital systems.

قيم البحث

اقرأ أيضاً

173 - Wenhao Liu , Sheng Li , hanlin Wu 2021
Two-dimensional transition metal dichalcogenide PdTe$_2$ recently attracts much attention due to its phase coexistence of type-II Dirac semimetal and type-I superconductivity. Here we report a 67 % enhancement of superconducting transition temperatur e in the 1T-PdSeTe in comparison to that of PdTe2 through partial substitution of Te atoms by Se. The superconductivity has been unambiguously confirmed by the magnetization, resistivity and specific heat measurements. 1T-PdSeTe shows type-II superconductivity with large anisotropy and non-bulk superconductivity nature with volume fraction ~ 20 % estimated from magnetic and heat capacity measurements. 1T-PdSeTe expands the family of superconducting transition metal dichalcogenides and thus provides additional insights for understanding superconductivity and topological physics in the 1T-PdTe$_2$ system
We study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor PdTe$_2$ by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe$_2$ with its sister compound PtSe$_2$, we demonstrate how enhanced inter-layer hopping in the Te-based material drives a band inversion within the anti-bonding p-orbital manifold well above the Fermi level. We show how this mediates spin-polarised topological surface states which form rich multi-valley Fermi surfaces with complex spin textures. Scanning tunneling spectroscopy reveals type-II superconductivity at the surface, and moreover shows no evidence for an unconventional component of its superconducting order parameter, despite the presence of topological surface states.
102 - Shekhar Das , Amit , Anshu Sirohi 2017
The transition metal dichalcogenide PdTe$_2$ was recently shown to be a unique system where a type II Dirac semimetallic phase and a superconducting phase co-exist. This observation has led to wide speculation on the possibility of the emergence of a n unconventional topological superconducting phase in PdTe$_2$. Here, through direct measurement of the superconducting energy gap by scanning tunneling spectroscopy (STS), and temperature and magnetic field evolution of the same, we show that the superconducting phase in PdTe$_2$ is conventional in nature. The superconducting energy gap is measured to be 326 $mu$eV at 0.38 K and it follows a temperature dependence that is well described within the framework of Bardeen-Cooper-Schriefers (BCS) theory of conventional superconductivity. This is surprising because our quantum oscillation measurements confirm that at least one of the bands participating in transport has topologically non-trivial character.
80 - F. Ronning , E.D. Bauer , T. Park 2009
Heat capacity, magnetic susceptibility, NMR, and resistivity of SrNi2P2 single crystals are presented, illustrating a purely structural transition at 325 K with no magnetism. Bulk superconductivity is found at 1.4 K. The magnitude of the transition t emperature T_c, fits to the heat capacity data, the small upper critical field $H_{c2}$ = 390 Oe, and Ginzburg-Landau parameter $kappa$ = 2.1 suggests a conventional fully gapped superconductor. With applied pressure a second structural phase transition occurs which results in an 8% reduction in the c/a ratio of lattice parameters. We find that superconductivity persists into this high pressure phase, although the transition temperature is monotonically suppressed with increasing pressure. Comparison of these Ni-P data as well as layered Fe-As and Ni-As superconductor indicates that reduced dimensionality can be a mechanism for increasing the transition temperature.
78 - Shaozhi Li , S. Johnston 2014
Determinant quantum Monte Carlo (DQMC) simulations are used to study non-linear electron-phonon interactions in a two-dimensional Holstein-like model on a square lattice. We examine the impact of non-linear electron-lattice interactions on supercondu ctivity and on Peierls charge-density-wave (CDW) correlations at finite temperatures and carrier concentrations. We find that the CDW correlations are dramatically suppressed with the inclusion of even a small non-linear interaction. Conversely, the effect of the non-linearity on superconductivity is found to be less dramatic at high temperatures; however, we find evidence that the non-linearity is ultimately detrimental to superconductivity. These effects are attributed to the combined hardening of the phonon frequency and a renormalization of the effective linear electron-phonon coupling towards weaker values. These results demonstrate the importance of non-linear interactions at finite carrier concentrations when one is addressing CDW and superconducting order and have implications for experiments that drive the lattice far from equilibrium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا