ترغب بنشر مسار تعليمي؟ اضغط هنا

Detector and Physics Performance at a Muon Collider

79   0   0.0 ( 0 )
 نشر من قبل Donatella Lucchesi
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A muon collider represents the ideal machine to reach very high center-of-mass energies and luminosities by colliding elementary particles. This is the result of the low level of beamstrahlung and synchrotron radiation compared to linear or circular electron-positron colliders. In contrast with other lepton machines, the design of a detector for a multi-TeV muon collider requires the knowledge of the interaction region due to the presence of a large amount of background induced by muon beam decays. The physics reaches can be properly evaluated only when the detector performance is determined. In this work, the background generated by muon beams of $750$ GeV is characterized and the performance of the tracking system and the calorimeter detector are illustrated. Solutions to minimize the effect of the beam-induced background are discussed and applied to obtain track and jet reconstruction performance. The $mu^+mu^-to H ubar{ u}to bbar b ubar{ u}$ process is fully simulated and reconstructed to demonstrate that physics measurements are possible in this harsh environment. The precision on Higgs boson coupling to $bbar b$ is evaluated for $sqrt{s}=1.5$, 3, and 10 TeV and compared to other proposed machines.



قيم البحث

اقرأ أيضاً

This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented en ergy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed GEANT4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments is described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. The reconstruction of hadronic jets has also been studied in the transverse momentum range from 50 GeV to 26 TeV. The granularity requirements for calorimetry are investigated using the two-particle spatial resolution achieved for hadron showers.
In light of the recent discovery of an approximately 126 GeV Higgs boson at the LHC, the particle physics community is beginning to explore the possibilities for a next-generation Higgs factory particle accelerator. In this report we study the s-chan nel resonant Higgs boson production and Standard Model backgrounds at a proposed mu+mu- collider Higgs factory operating at center-of-mass energy sqrt(s) = M_H with a beam width of 4.2 MeV. We study PYTHIA-generated Standard Model Higgs and background events at the generator level to identify and evaluate important channels for discovery and measurement of the Higgs mass, width, and branching ratios. We find that the H^0 -> bb and H^0 -> WW^* channels are the most useful for locating the Higgs peak. With an integrated luminosity of 1 fb^-1 we can measure a 126 GeV Standard Model Higgs mass accurately to within 0.25 MeV and its total width to within 0.45 MeV. Our results demonstrate the value of the high Higgs cross section and narrow beam resolution potentially achievable at a muon collider.
68 - V. Daniel Elvira 2017
Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental pr ograms. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.
A muon range detector (MRD) has been constructed as a near detector for the KEK-to-Kamioka long-baseline neutrino experiment (K2K). It monitors the neutrino beam properties at the near site by measuring the energy, angle and production point of muons produced by charged-current neutrino interaction. The detector has been working stably since the start of the K2K experiment.
A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potentia l for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا