ترغب بنشر مسار تعليمي؟ اضغط هنا

A search for Centaurus A-like features in the spectra of Fermi-LAT detected radio galaxies

78   0   0.0 ( 0 )
 نشر من قبل Cameron Rulten
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Cameron B. Rulten




اسأل ChatGPT حول البحث

Motivated by the detection of a hardening in the gamma-ray spectrum of the radio galaxy Centaurus A, we have analysed ~10 years of Fermi-LAT observations of 26 radio galaxies to search for similar spectral features. We find that the majority of the radio galaxies gamma-ray spectral energy distributions are best fitted with a simple power-law model, and no spectral hardening similar to that found in Centaurus A was detected. We show that, had there been any such spectral features present in our sample of radio galaxies, they would have been seen, but note that 7 of the radio galaxies (3C 111, 3C 120, 3C 264, IC 4516, NGC 1218, NGC 2892 and PKS 0625-35) show evidence for flux variability on 6-month timescales, which makes the detection of any steady spectral features difficult. We find a strong positive correlation (r = 0.9) between the core radio power at 5 GHz and the gamma-ray luminosity and, using a simple extrapolation to TeV energies, we expect around half of the radio galaxies studied will be detectable with the forthcoming Cherenkov Telescope Array.



قيم البحث

اقرأ أيضاً

Centaurus B is a nearby radio galaxy positioned in the Southern hemisphere close to the Galactic plane. Here we present a detailed analysis of about 43 months of accumulated Fermi-LAT data of the gamma-ray counterpart of the source initially reported in the 2nd Fermi-LAT catalog, and of newly acquired Suzaku X-ray data. We confirm its detection at GeV photon energies, and analyze the extension and variability of the gamma-ray source in the LAT dataset, in which it appears as a steady gamma-ray emitter. The X-ray core of Centaurus B is detected as a bright source of a continuum radiation. We do not detect however any diffuse X-ray emission from the known radio lobes, with the provided upper limit only marginally consistent with the previously claimed ASCA flux. Two scenarios that connect the X-ray and gamma-ray properties are considered. In the first one, we assume that the diffuse non-thermal X-ray emission component is not significantly below the derived Suzaku upper limit. In this case, modeling the inverse-Compton emission shows that the observed gamma-ray flux of the source may in principle be produced within the lobes. This association would imply that efficient in-situ acceleration of the radiating electrons is occurring and that the lobes are dominated by the pressure from the relativistic particles. In the second scenario, with the diffuse X-ray emission well below the Suzaku upper limits, the lobes in the system are instead dominated by the magnetic pressure. In this case, the observed gamma-ray flux is not likely to be produced within the lobes, but instead within the nuclear parts of the jet. By means of synchrotron self-Compton modeling we show that this possibility could be consistent with the broad-band data collected for the unresolved core of Centaurus B, including the newly derived Suzaku spectrum.
Centaurus B (Cen B) is one of the closest and brightest radio-loud galaxy in the southern sky. This radio galaxy, proposed as a plausible candidate for accelerating ultra-high-energy cosmic rays (UHECRs), is near the highest-energy neutrino event rep orted (IC35) in the High-Energy Starting Events catalog. Pierre Auger observatory reported the highest energy comic rays during 10 years of collecting data with some of them around this source. In this paper, the analysis of the gamma-ray spectrum and the light curve above 200 MeV is presented with nine years of cumulative Fermi-LAT data around Cen B. Taking into consideration the multi-wavelength observations carried out about this radio galaxy, leptonic and hadronic scenarios are introduced in order to fit the spectral energy distribution, assuming that the gamma-ray flux is produced in a region close to the core and in the extended lobes. Using the best-fit values found, several physics properties of this radio galaxy are derived. Furthermore, a statistical analysis of the cosmic ray distribution around Cen B is performed, finding that this distribution is not different from the background at a level of significance of 5%. Considering the UHECR event associated to this source by Moskalenko et al. and extrapolating its luminosity to low energies, we do not find enough evidence to associate the highest-energy neutrino event (IC35) with this radio galaxy.
151 - P. S. Ray , A. A. Abdo , D. Parent 2012
We present a summary of the Fermi Pulsar Search Consortium (PSC), an international collaboration of radio astronomers and members of the Large Area Telescope (LAT) collaboration, whose goal is to organize radio follow-up observations of Fermi pulsars and pulsar candidates among the LAT gamma-ray source population. The PSC includes pulsar observers with expertise using the worlds largest radio telescopes that together cover the full sky. We have performed very deep observations of all 35 pulsars discovered in blind frequency searches of the LAT data, resulting in the discovery of radio pulsations from four of them. We have also searched over 300 LAT gamma-ray sources that do not have strong associations with known gamma-ray emitting source classes and have pulsar-like spectra and variability characteristics. These searches have led to the discovery of a total of 43 new radio millisecond pulsars (MSPs) and four normal pulsars. These discoveries greatly increase the known population of MSPs in the Galactic disk, more than double the known population of so-called `black widow pulsars, and contain many promising candidates for inclusion in pulsar timing arrays.
199 - Paola Grandi 2011
We review the high energy properties of Misaligned AGNs associated with gamma-ray sources detected by Fermi in 24 months of survey. Most of them are nearby emission low power radio galaxies (i.e FRIs) which probably have structured jets. On the contr ary, high power radio sources (i.e FRIIs) with GeV emission are rare. The small number of FRIIs does not seem to be related to their higher redshifts. Assuming proportionality between the radio core flux and the gamma-ray flux, several of them are expected to be bright enough to be detected above 100 MeV in spite of their distance. We suggest that beaming/jet structural differences are responsible for the detection rate discrepancy observed between FRIs and FRIIs.
Fast Radio Bursts (FRBs) are a mysterious flash phenomenon detected in radio wavelengths with a duration of only a few milliseconds, and they may also have prompt gamma-ray flashes. Here we carry out a blind search for msec-duration gamma-ray flashes using the 7-year Fermi Large Area Telescope (Fermi-LAT) all-sky gamma-ray data. About 100 flash candidates are detected, but after removing those associated with bright steady point sources, we find no flash events at high Galactic latitude region (|b|>20 deg). Events at lower latitude regions are consistent with statistical flukes originating from the diffuse gamma-ray background. From these results, we place an upper limit on the GeV gamma-ray to radio flux ratio of FRBs as xi equiv (nu L_nu)_gamma / (nu L_nu)_radio < 10^8, depending on the assumed FRB rate evolution. This limit is comparable with the largest value found for pulsars, though xi of pulsars is distributed in a wide range. We also compare this limit with the spectral energy distribution of the 2004 giant flare of the magnetar SGR 1806-20.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا