ﻻ يوجد ملخص باللغة العربية
Many applications of formal methods require automated reasoning about system properties, such as system safety and security. To improve the performance of automated reasoning engines, such as SAT/SMT solvers and first-order theorem prover, it is necessary to understand both the successful and failing attempts of these engines towards producing formal certificates, such as logical proofs and/or models. Such an analysis is challenging due to the large number of logical formulas generated during proof/model search. In this paper we focus on saturation-based first-order theorem proving and introduce the SATVIS tool for interactively visualizing saturation-based proof attempts in first-order theorem proving. We build SATVIS on top of the world-leading theorem prover VAMPIRE, by interactively visualizing the saturation attempts of VAMPIRE in SATVIS. Our work combines the automatic layout and visualization of the derivation graph induced by the saturation attempt with interactive transformations and search functionality. As a result, we are able to analyze and debug (failed) proof attempts of VAMPIRE. Thanks to its interactive visualisation, we believe SATVIS helps both experts and non-experts in theorem proving to understand first-order proofs and analyze/refine failing proof attempts of first-order provers.
This paper presents new features recently implemented in the theorem prover Vampire, namely support for first-order logic with a first class boolean sort (FOOL) and polymorphic arrays. In addition to having a first class boolean sort, FOOL also conta
3D visualization is an important data analysis and knowledge discovery tool, however, interactive visualization of large 3D astronomical datasets poses a challenge for many existing data visualization packages. We present a solution to interactively
We present a system that allows users to visualize complex human motion via 3D motion sculptures---a representation that conveys the 3D structure swept by a human body as it moves through space. Given an input video, our system computes the motion sc
Debugging is famously one the hardest parts in programming. In this paper, we tackle the question: what does a debugging environment look like when we take interactive visualization as a central design principle? We introduce Anteater, an interactive
Embeddings are ubiquitous in machine learning, appearing in recommender systems, NLP, and many other applications. Researchers and developers often need to explore the properties of a specific embedding, and one way to analyze embeddings is to visual