ترغب بنشر مسار تعليمي؟ اضغط هنا

Tight bound on finite-resolution quantum thermometry at low temperatures

72   0   0.0 ( 0 )
 نشر من قبل Mathias J{\\o}rgensen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Precise thermometry is of wide importance in science and technology in general and in quantum systems in particular. Here, we investigate fundamental precision limits for thermometry on cold quantum systems, taking into account constraints due to finite measurement resolution. We derive a tight bound on the optimal precision scaling with temperature, as the temperature approaches zero. The bound can be saturated by monitoring the non-equilibrium dynamics of a single-qubit probe. We support this finding by accurate numerical simulations of a spin-boson model. Our results are relevant both fundamentally, as they illuminate the ultimate limits to quantum thermometry, and practically, in guiding the development of sensitive thermometric techniques applicable at ultracold temperatures.

قيم البحث

اقرأ أيضاً

372 - M.A. Novotny , F. Jin , S. Yuan 2015
We study measures of decoherence and thermalization of a quantum system $S$ in the presence of a quantum environment (bath) $E$. The whole system is prepared in a canonical thermal state at a finite temperature. Applying perturbation theory with resp ect to the system-environment coupling strength, we find that under common Hamiltonian symmetries, up to first order in the coupling strength it is sufficient to consider the uncoupled system to predict decoherence and thermalization measures of $S$. This decoupling allows closed form expressions for perturbative expansions for the measures of decoherence and thermalization in terms of the free energies of $S$ and of $E$. Numerical results for both coupled and decoupled systems with up to 40 quantum spins validate these findings.
We prove tight lower bounds for the following variant of the counting problem considered by Aaronson et al. The task is to distinguish whether an input set $xsubseteq [n]$ has size either $k$ or $k=(1+epsilon)k$. We assume the algorithm has access to * the membership oracle, which, for each $iin [n]$, can answer whether $iin x$, or not; and * the uniform superposition $|psi_xrangle = sum_{iin x} |irangle/sqrt{|x|}$ over the elements of $x$. Moreover, we consider three different ways how the algorithm can access this state: ** the algorithm can have copies of the state $|psi_xrangle$; ** the algorithm can execute the reflecting oracle which reflects about the state $|psi_xrangle$; ** the algorithm can execute the state-generating oracle (or its inverse) which performs the transformation $|0ranglemapsto |psi_xrangle$. Without the second type of resources (related to $|psi_xrangle$), the problem is well-understood, see Brassard et al. The study of the problem with the second type of resources was recently initiated by Aaronson et al. We completely resolve the problem for all values of $1/k le epsilonle 1$, giving tight trade-offs between all types of resources available to the algorithm. Thus, we close the main open problems from Aaronson et al. The lower bounds are proven using variants of the adversary bound by Belovs and employing analysis closely related to the Johnson association scheme.
For complex molecules, nuclear degrees of freedom can act as an environment for the electronic `system variables, allowing the theory and concepts of open quantum systems to be applied. However, when molecular system-environment interactions are non- perturbative and non-Markovian, numerical simulations of the complete system-environment wave function become necessary. These many body dynamics can be very expensive to simulate, and extracting finite-temperature results - which require running and averaging over many such simulations - becomes especially challenging. Here, we present numerical simulations that exploit a recent theoretical result that allows dissipative environmental effects at finite temperature to be extracted efficiently from a single, zero-temperature wave function simulation. Using numerically exact time-dependent variational matrix product states, we verify that this approach can be applied to vibronic tunneling systems and provide insight into the practical problems lurking behind the elegance of the theory, such as the rapidly growing numerical demands that can appear for high temperatures over the length of computations.
What is the minimum time required to take the temperature? In this paper, we solve this question for any process where temperature is inferred by measuring a probe (the thermometer) weakly coupled to the sample of interest, so that the probes evoluti on is well described by a quantum Markovian master equation. Considering the most general control strategy on the probe (adaptive measurements, arbitrary control on the probes state and Hamiltonian), we provide bounds on the achievable measurement precision in a finite amount of time, and show that in many scenarios these fundamental limits can be saturated with a relatively simple experiment. We find that for a general class of sample-probe interactions the scaling of the measurement uncertainty is inversely proportional to the time of the process, a shot-noise like behaviour that arises due to the dissipative nature of thermometry. As a side result, we show that the Lamb shift induced by the probe-sample interaction can play a relevant role in thermometry, allowing for finite measurement resolution in the low-temperature regime (more precisely, the measurement uncertainty decays polynomially with the temperature as $Trightarrow 0$, in contrast to the usual exponential decay with $T^{-1}$). We illustrate these general results for (i) a qubit probe interacting with a bosonic sample, where the role of the Lamb shit is highlighted, and (ii) a collective superradiant coupling between a $N$-qubit probe and a sample, which enables a quadratic decay with $N^2$ of the measurement uncertainty.
We introduce a general framework for thermometry based on collisional models, where ancillas probe the temperature of the environment through an intermediary system. This allows for the generation of correlated ancillas even if they are initially ind ependent. Using tools from parameter estimation theory, we show through a minimal qubit model that individual ancillas can already outperform the thermal Cramer-Rao bound. In addition, due to the steady-state nature of our model, when measured collectively the ancillas always exhibit superlinear scalings of the Fisher information. This means that even collective measurements on pairs of ancillas will already lead to an advantage. As we find in our qubit model, such a feature may be particularly valuable for weak system-ancilla interactions. Our approach sets forth the notion of metrology in a sequential interactions setting, and may inspire further advances in quantum thermometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا