ﻻ يوجد ملخص باللغة العربية
We study a simplest viable dark matter model with a real singlet scalar, vector-like singlet and a doublet lepton. We find a considerable enhancement in the allowed region of the scalar dark matter parameter spaces under the influence of the new Yukawa coupling. The Yukawa coupling associate with the fermion sector heavily dominant the dark matter parameter spaces satisfying the current relic density of the Universe. Dilepton$+slashed{E}_T$ signature arising from the new fermionic sector can observe at Large Hadron Collider (LHC). We perform such analysis in the context of 14 TeV LHC experiments with a future integrated luminosity of 3000 ${rm fb^{-1}}$. We found that a large region of the parameter spaces can be probed by the LHC experiments. The projected exclusion/discovery reach of direct heavy charged fermion searches in this channels is analyzed by performing a detailed cut based collider analysis. The projected exclusion contour reaches up to $1050-1380~{rm GeV}$ for 3000 ${rm fb^{-1}}$ for a light dark matter $mathcal{O}(10)$ GeV from searches in the $ pp rightarrow E_1^pm E_1^mp, E_1^pmrightarrow l^pm S rightarrow ll + slashed{E}_T$ channel.
We study the minimal scotogenic model constituting an additional inert Higgs doublet and three sets of right-handed neutrinos. The scotogenic model connects dark matter, baryon asymmetry of the Universe and neutrino oscillation data. In our work, we
We study the dark matter phenomenology of scotogenic frameworks through the rather illustrative model T1-2A extending the Standard Model by scalar and fermionic singlets and doublets. Such a setup is phenomenologically attractive since it provides th
One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a $mathbb{Z}_2$ symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits
In this letter, we propose an extension of the scotogenic model where singlet Majorana particle can be dark matter (DM) without the need of a highly suppressed scalar coupling of the order $O(10^{-10})$. For that, the SM is extended with three single
We consider the singlet scalar model of dark matter and study the expected antiproton and positron signals from dark matter annihilations. The regions of the viable parameter space of the model that are excluded by present data are determined, as wel