ترغب بنشر مسار تعليمي؟ اضغط هنا

A broadband X-ray view of the NLSy1 1E 0754.6+392.8

110   0   0.0 ( 0 )
 نشر من قبل Riccardo Middei
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The soft X-ray band of many active galactic nuclei (AGNs) is affected by obscuration due to partially ionised matter crossing our line of sight. In this context, two past XMM-Newton observations (6 months apart) and a simultaneous NuSTAR-Swift ($sim$8 years later) exposure of the Narrow Line Seyfert 1 galaxy 1E 0754.6+392.8 revealed an intense and variable WA and hints of additional absorbers in the Fe K$alpha$ band. We present the first X-ray characterisation of this AGN discussing its broadband (0.3-79 keV) spectrum and temporal properties. We conduct a temporal and spectroscopic analysis on two $sim$10 ks (net exposure) XMM-Newton snapshots performed in April and October 2006. We also study the high energy behaviour of 1E 0754.6+392.8 modelling its broadband spectrum using simultaneous Swift-NuSTAR data. Both phenomenological and physically motivated models are tested. We find the presence of flux variability ($sim$150% and 30% for 0.3-2 and 2-10 keV bands, respectively) and spectral changes at months timescales ($DeltaGammasim$0.4). A reflection component that is consistent with being constant over years and arising from relatively cold material far from the central super massive black hole is detected. The main spectral feature shaping the 1E 0754.6+392.8 spectrum is a warm absorber. Such a component is persistent over the years and variability of its ionisation and column density is observed down on months in the ranges 3$times10^{22} rm cm^{-2}lesssim$ N$_{rm{H}}lesssim7.2times10^{22} rm cm^{-2}$ and 1.5 $lesssimlog(xi/{rm erg~s^{-1}~cm})lesssim$2.1. Despite the short exposures, we find possible evidence of two additional highly ionised and high-velocity outflow components in absorption. Longer exposures are mandatory in order to characterise the complex outflow in this AGN.

قيم البحث

اقرأ أيضاً

79 - X. Zhao , S. Marchesi , M. Ajello 2020
In modeling the X-ray spectra of active galactic nuclei (AGNs), the inclination angle is a parameter that can play an important role in analyzing the X-ray spectra of AGN, but it has never been studied in detail. We present a broadband X-ray spectral analysis of the joint NuSTAR-XMM-Newton observations of 13 sources with [OIII] measured inclinations determined by Fischer et al. 2013. By freezing the inclination angles at the [OIII] measured values when modeling the observations, the spectra are well fitted and the geometrical properties of the obscuring structure of the AGNs are slightly better constrained than those fitted when the inclination angles are left free to vary. We also test if one could freeze the inclinations at other specific angles in fitting the AGN X-ray spectra as commonly did in the literatures. We find that one should always let the inclination angle free to vary in modeling the X-ray spectra of AGNs, while fixing the inclination angle at [OIII] measured values and fixing the inclination angle at 60$^circ$ also present correct fits of the sources in our sample.Correlations between the covering factor and the average column density of the obscuring torus with respect to the Eddington ratio are also measured, suggesting that the distribution of the material in the obscuring torus is regulated by the Eddington ratio, which is in agreement with previous studies. In addition, no geometrical correlation is found between the narrow line region of the AGN and the obscuring torus, suggesting that the geometry might be more complex than what is assumed in the simplistic unified model.
80 - M. Berton , V. Braito , S. Mathur 2019
Narrow-line Seyfert 1 galaxies (NLS1s) is one of the few classes of active galactic nuclei (AGN) harboring powerful relativistic jets and detected in $gamma$ rays. NLS1s are well-known X-ray sources. While in non-jetted sources the origin of this X-r ay emission may be a hot corona surrounding the accretion disk, in jetted objects, especially beamed ones, the contribution of corona and relativistic jet is difficult to disentangle without a proper sampling of the hard X-ray emission. For this reason, we observed with textit{NuSTAR} the first four NLS1s detected at high energy $gamma$ rays. These data, along with textit{XMM-Newton} and textit{Swift/XRT} observations, confirmed that X rays originate both in the jet and in the accretion disk corona. Time variability in hard X rays furthermore suggests that, as observed in flat-spectrum radio quasars, the dissipation region during flares could change its position from source to source, and it can be located both inside and outside the broad-line region. We find that jetted NLS1s, and other blazars as well, seem not to follow the classical fundamental plane of black hole activity, which therefore should be used as a black hole mass estimator in blazars with extreme care only. Our results strengthen the idea according to which $gamma$-NLS1s are smaller and younger version of flat-spectrum radio quasars, in which both a Seyfert and a blazar component co-exist.
Identification of Abell 3120 as a galaxy cluster has recently been questioned with alternative suggestions including: a fossil remnant of a group merger, non-thermal emission from a radio galaxy, and projected emission from of a filamentary string of galaxies. We report on our analysis of the Chandra observation and evaluate these hypotheses based on our results. Abell 3120 shows X-ray emission extending 158 kpc, well beyond the central galaxy. The spatial distribution of X-rays in the core more closely follows the radio emission showing a jet-like structure extending to the north that is misaligned with the stellar light distribution of the central galaxy. At larger radii the X-ray emission is aligned with the SE-NW running axis of the galaxy distribution in the cluster core. Modeling the X-ray spectrum excludes purely non-thermal emission. The emission weighted temperature is 1.93 - 2.19 keV and the 0.3 - 10 keV luminosity is 1.23$times10^{43}$ ergs s$^{-1}$. Abell 3120 appears to be a poor cluster with Virgo and MKW 4 as peers. The best fitting model consists of a thermal component and a second component that may be either thermal or non-thermal, with luminosity 25% of the total X-ray luminosity. While, a more detailed spatial-spectral search failed to detect a central AGN, there is some evidence for an extended hard X-ray component. Cooler gas, 1.28 - 1.80 was detected in the central 20 kpc. The second thermal component marginally requires a higher redshift, >0.12, which may be due to a second cluster in the rich surrounding environment consisting of nearly a thousand catalogued galaxies.
We present the X-ray properties of the Teacup AGN (SDSS J1430+1339), a $z=0.085$ type 2 quasar which is interacting dramatically with its host galaxy. Spectral modelling of the central quasar reveals a powerful, highly obscured AGN with a column dens ity of $N_{rm H}=(4.2$-$6.5)times 10^{23}$ cm$^{-2}$ and an intrinsic luminosity of $L_{rm 2mbox{-}10,keV}=(0.8$-$1.4)times 10^{44}$ erg s$^{-1}$. The current high bolometric luminosity inferred ($L_{rm bol}approx 10^{45}$-$10^{46}$ erg s$^{-1}$) has ramifications for previous interpretations of the Teacup as a fading/dying quasar. High resolution Chandra imaging data reveal a $approx 10$ kpc loop of X-ray emission, co-spatial with the eastern bubble previously identified in luminous radio and ionised gas (e.g., [OIII] line) emission. The X-ray emission from this structure is in good agreement with a shocked thermal gas, with $T=(4$-$8)times 10^{6}$ K, and there is evidence for an additional hot component with $Tgtrsim 3times 10^{7}$ K. Although the Teacup is a radiatively dominated AGN, the estimated ratio between the bubble power and the X-ray luminosity is in remarkable agreement with observations of ellipticals, groups, and clusters of galaxies undergoing AGN feedback.
We present joint textit{XMM-Newton} and textit{NuSTAR} observations of the `bare narrow line Seyfert 1 Ton S180 ($z=0.062$), carried out in 2016 and providing the first hard X-ray view of this luminous galaxy. We find that the 0.4--30 keV band cannot be self-consistently reproduced by relativistic reflection models, which fail to account simultaneously for the soft and hard X-ray emission. The smooth soft excess prefers extreme blurring parameters, confirmed by the nearly featureless nature of the RGS spectrum, while the moderately broad Fe K line and the modest hard excess above 10 keV appear to arise in a milder gravity regime. By allowing a different origin of the soft excess, the broadband X-ray spectrum and overall spectral energy distribution (SED) are well explained by a combination of: (a) direct thermal emission from the accretion disc, dominating from the optical to the far/extreme UV; (b) Comptonization of seed disc photons by a warm ($kT_{rm e}sim0.3$ keV) and optically thick ($tausim10$) corona, mostly contributing to the soft X-rays; (c) Comptonization by a standard hot ($kT_{rm e} gtrsim 100$ keV) and optically thin ($tau<0.5$) corona, responsible for the primary X-ray continuum; and (d) reflection from the mid/outer part of the disc. The two coronae are suggested to be rather compact, with $R_{rm hot} lesssim R_{rm warm} lesssim 10$ R$_{rm g}$. Our SED analysis implies that Ton S180 accretes at super-Eddington rates. This is a key condition for the launch of a wind, marginal (i.e., 3.1$sigma$ significance) evidence of which is indeed found in the RGS spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا