ترغب بنشر مسار تعليمي؟ اضغط هنا

On measures of classicality/quantumness in quasiprobability representations of finite-dimensional quantum systems

77   0   0.0 ( 0 )
 نشر من قبل Astghik Torosyan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present report we discuss measures of classicality/quantumness of states of finite-dimensional quantum systems, which are based on a deviation of quasiprobability distributions from true statistical distributions. Particularly, the dependence of the global indicator of classicality on the assigned geometry of a quantum state space is analysed for a whole family of Wigner quasiprobability representations. General considerations are exemplified by constructing the global indicator of classicality/quantumness for the Hilbert-Schmidt, Bures and Bogoliubov-Kubo-Mori ensembles of qubits and qutrits.


قيم البحث

اقرأ أيضاً

A mapping between operators on the Hilbert space of $N$-dimensional quantum system and the Wigner quasiprobability distributions defined on the symplectic flag manifold is discussed. The Wigner quasiprobability distribution is constructed as a dual p airing between the density matrix and the Stratonovich-Weyl kernel. It is shown that the moduli space of the Stratonovich-Weyl kernel is given by an intersection of the coadjoint orbit space of the $SU(N)$ group and a unit $(N-2)$-dimensional sphere. The general consideration is exemplified by a detailed description of the moduli space of 2, 3 and 4-dimensional systems.
We derive a sequence of measures whose corresponding Jacobi matrices have special properties and a general mapping of an open quantum system onto 1D semi infinite chains with only nearest neighbour interactions. Then we proceed to use the sequence of measures and the properties of the Jacobi matrices to derive an expression for the spectral density describing the open quantum system when an increasing number of degrees of freedom in the environment have been embedded into the system. Finally, we derive convergence theorems for these residual spectral densities.
It is commonly accepted that a deviation of the Wigner quasiprobability distribution of a quantum state from a proper statistical distribution signifies its nonclassicality. Following this ideology, we introduce the global indicator $mathcal{Q}_N$ fo r quantification of classicality-quantumness correspondence in the form of the functional on the orbit space $mathcal{O}[mathfrak{P}_N]$ of the $SU(N)$ group adjoint action on the state space $mathfrak{P}_N$ of an $N$-dimensional quantum system. The indicator $mathcal{Q}_{N}$ is defined as a relative volume of a subspace $mathcal{O}[mathfrak{P}^{(+)}_N] subset mathcal{O}[mathfrak{P}_N],,$ where the Wigner quasiprobability distribution is positive. An algebraic structure of $mathcal{O}[mathfrak{P}^{(+)}_N]$ is revealed and exemplified by a single qubit $(N=2)$ and single qutrit $(N=3)$. For the Hilbert-Schmidt ensemble of qutrits the dependence of the global indicator on the moduli parameter of the Wigner quasiprobability distribution has been found.
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom -- the symplectic eigenvalues -- which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
In the present article, we consistently develop the main issues of the Bloch vectors formalism for an arbitrary finite-dimensional quantum system. In the frame of this formalism, qudit states and their evolution in time, qudit observables and their e xpectations, entanglement and nonlocality, etc. are expressed in terms of the Bloch vectors -- the vectors in the Euclidean space $mathbb{R}^{d^{2}-1}$ arising under decompositions of observables and states in different operator bases. Within this formalism, we specify for all $dgeq2$ the set of Bloch vectors of traceless qudit observables and describe its properties; also, find for the sets of the Bloch vectors of qudit states, pure and mixed, the new compact expressions in terms of the operator norms that explicitly reveal the general properties of these sets and have the unified form for all $dgeq2$. For the sets of the Bloch vectors of qudit states under the generalized Gell-Mann representation, these general properties cannot be analytically extracted from the known equivalent specifications of these sets via the system of algebraic equations. We derive the general equations describing the time evolution of the Bloch vector of a qudit state if a qudit system is isolated and if it is open and find for both cases the main properties of the Bloch vector evolution in time. For a pure bipartite state of a dimension $d_{1}times d_{2}$, we quantify its entanglement in terms of the Bloch vectors for its reduced states. The introduced general formalism is important both for the theoretical analysis of quantum system properties and for quantum applications, in particular, for optimal quantum control, since, for systems where states are described by vectors in the Euclidean space, the methods of optimal control, analytical and numerical, are well developed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا