ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparative Study of Data-driven Solar Coronal Field Models Using a Flux Emergence Simulation as a Ground-truth Data Set

68   0   0.0 ( 0 )
 نشر من قبل Shin Toriumi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For a better understanding of magnetic field in the solar corona and dynamic activities such as flares and coronal mass ejections, it is crucial to measure the time-evolving coronal field and accurately estimate the magnetic energy. Recently, a new modeling technique called the data-driven coronal field model, in which the time evolution of magnetic field is driven by a sequence of photospheric magnetic and velocity field maps, has been developed and revealed the dynamics of flare-productive active regions. Here we report on the first qualitative and quantitative assessment of different data-driven models using a magnetic flux emergence simulation as a ground-truth (GT) data set. We compare the GT field with those reconstructed from the GT photospheric field by four data-driven algorithms. It is found that, at least, the flux rope structure is reproduced in all coronal field models. Quantitatively, however, the results show a certain degree of model dependence. In most cases, the magnetic energies and relative magnetic helicity are comparable to or at most twice of the GT values. The reproduced flux ropes have a sigmoidal shape (consistent with GT) of various sizes, a vertically-standing magnetic torus, or a packed structure. The observed discrepancies can be attributed to the highly non-force-free input photospheric field, from which the coronal field is reconstructed, and to the modeling constraints such as the treatment of background atmosphere, the bottom boundary setting, and the spatial resolution.

قيم البحث

اقرأ أيضاً

A data-driven active region evolution (DARE) model has been developed to study the complex structures and dynamics of solar coronal magnetic fields. The model is configured with typical coronal environment of tenuous gas governed by strong magnetic f ield, and thus its lower boundary is set at the base of the corona, but driven by magnetic fields observed in the photosphere. A previous assessment of the model using data from a flux emergence simulation (FES) showed that the DARE failed to reproduce the coronal magnetic field in the FES, which is attributed to the fact that the photospheric data in the FES has a very strong Lorentz force and therefore spurious flows are generated in the DARE model. Here we further test the DARE by using three sets of data from the FES sliced at incremental heights, which correspond to the photosphere, the chromosphere and the base of the corona. It is found that the key difference in the three sets of data is the extent of the Lorentz force, which makes the data-driven model perform very differently. At the two higher levels above the photosphere, the Lorentz force decreases substantially, and the DARE model attains results in much better agreement with the FES, confirming that the Lorentz force in the boundary data is a key issue affecting the results of the DARE model. However, unlike the FES data, the photospheric field from SDO/HMI observations has recently been found to be very close to force-free. Therefore, we suggest that it is still reasonable to use the photospheric magnetic field as approximation of the field at the coronal base to drive the DARE model.
A joint campaign of various space-borne and ground-based observatories, comprising the Japanese Hinode mission (HOP~338, 20,--,30~September 2017), the GREGOR solar telescope, and the textit{Vacuum Tower Telescope} (VTT), investigated numerous targets such as pores, sunspots, and coronal holes. In this study, we focus on the coronal hole region target. On 24~September 2017, a very extended non-polar coronal hole developed patches of flux emergence, which contributed to the decrease of the overall area of the coronal hole. These flux emergence patches erode the coronal hole and transform the area into a more quiet-Sun-like area, whereby bipolar magnetic structures play an important role. Conversely, flux cancellation leads to the reduction of opposite-polarity magnetic fields and to an increase in the area of the coronal hole. Other global coronal hole characteristics, including the evolution of the associated magnetic flux and the aforementioned area evolution in the EUV, are studied using data of the textit{Helioseismic and Magnetic Imager} (HMI) and textit{Atmospheric Imaging Assembly} (AIA) onboard the textit{Solar Dynamics Observatory} (SDO). The interplanetary medium parameters of the solar wind display parameters compatible with the presence of the coronal hole. Furthermore, a particular transient is found in those parameters.
A three-dimensional numerical experiment of the launching of a hot and fast coronal jet followed by several violent eruptions is analyzed in detail. These events are initiated through the emergence of a magnetic flux rope from the solar interior into a coronal hole. We explore the evolution of the emerging magnetically-dominated plasma dome surmounted by a current sheet and the ensuing pattern of reconnection. A hot and fast coronal jet with inverted-Y shape is produced that shows properties comparable to those frequently observed with EUV and X-Ray detectors. We analyze its 3D shape, its inhomogeneous internal structure, and its rise and decay phases, lasting for some 15-20 min each. Particular attention is devoted to the field-line connectivities and the reconnection pattern. We also study the cool and high-density volume that appears encircling the emerged dome. The decay of the jet is followed by a violent phase with a total of five eruptions. The first of them seems to follow the general pattern of tether-cutting reconnection in a sheared arcade, although modified by the field topology created by the preceding reconnection evolution. The two following eruptions take place near and above the strong field-concentrations at the surface. They show a twisted, Omega-loop like rope expanding in height, with twist being turned into writhe, thus hinting at a kink instability (perhaps combined with a torus-instability) as the cause of the eruption. The succession of a main jet ejection and a number of violent eruptions that resemble mini-CMEs and their physical properties suggest that this experiment may provide a model for the blowout jets recently proposed in the literature.
Magnetic flux ropes (MFRs) are thought to be the central structure of solar eruptions, and their ideal MHD instabilities can trigger the eruption. Here we performed a study of all the MFR configurations that lead to major solar flares, either eruptiv e or confined, from 2011 to 2017 near the solar disk center. The coronal magnetic field is reconstructed from observed magnetograms, and based on magnetic twist distribution, we identified the MFR, which is defined as a coherent group of magnetic field lines winding an axis with more than one turn. It is found that 90% of the events possess pre-flare MFRs, and their three-dimensional structures are much more complex in details than theoretical MFR models. We further constructed a diagram based on two parameters, the magnetic twist number which controls the kink instability (KI), and the decay index which controls the torus instability (TI). It clearly shows lower limits for TI and KI thresholds, which are $n_{rm crit} = 1.3$ and $|T_w|_{rm crit} = 2$, respectively, as all the events above $n_{rm crit}$ and nearly 90% of the events above $|T_w|_{rm crit}$ erupted. Furthermore, by such criterion, over 70% of the events can be discriminated between eruptive and confined flares, and KI seems to play a nearly equally important role as TI in discriminating between the two types of flare. There are more than half of events with both parameters below the lower limits, and 29% are eruptive. These events might be triggered by magnetic reconnection rather than MHD instabilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا