ترغب بنشر مسار تعليمي؟ اضغط هنا

In-Flight Performance and Calibration of the LOng Range Reconnaissance Imager (LORRI) for the New Horizons Mission

65   0   0.0 ( 0 )
 نشر من قبل Harold Weaver Jr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The LOng Range Reconnaissance Imager (LORRI) is a panchromatic (360--910 nm), narrow-angle (field of view = 0.29 deg), high spatial resolution (pixel scale = 1.02 arcsec) visible light imager used on NASAs New Horizons (NH) mission for both science observations and optical navigation. Calibration observations began several months after the NH launch on 2006 January 19 and have been repeated annually throughout the course of the mission, which is ongoing. This paper describes the in-flight LORRI calibration measurements, and the results derived from our analysis of the calibration data. LORRI has been remarkably stable over time with no detectable changes (at the 1% level) in sensitivity or optical performance since launch. By employing 4 by 4 re-binning of the CCD pixels during read out, a special spacecraft tracking mode, exposure times of 30 sec, and co-addition of approximately 100 images, LORRI can detect unresolved targets down to V = 22 (SNR=5). LORRI images have an instantaneous dynamic range of 3500, which combined with exposure time control ranging from 0ms to 64,967 ms in 1ms steps supports high resolution, high sensitivity imaging of planetary targets spanning heliocentric distances from Jupiter to deep in the Kuiper belt, enabling a wide variety of scientific investigations. We describe here how to transform LORRI images from raw (engineering) units into scientific (calibrated) units for both resolved and unresolved targets. We also describe various instrumental artifacts that could affect the interpretation of LORRI images under some observing circumstances.



قيم البحث

اقرأ أيضاً

The LOng-Range Reconnaissance Imager (LORRI) is the high resolution imaging instrument for the New Horizons mission to Pluto, its giant satellite Charon, its small moons Nix and Hydra, and the Kuiper Belt, which is the vast region of icy bodies exten ding roughly from Neptunes orbit out to 50 astronomical units (AU). New Horizons launched on January 19, 2006 as the inaugural mission in NASAs New Frontiers program. LORRI is a narrow angle (field of view=0.29 deg), high resolution (4.95 microrad pixels), Ritchey-Chretien telescope with a 20.8 cm diameter primary mirror, a focal length of 263 cm, and a three lens field-flattening assembly. A 1024 x 1024 pixel (optically active region), thinned, backside-illuminated charge-coupled device (CCD) detector is used in the focal plane unit and is operated in frame transfer mode. LORRI provides panchromatic imaging over a bandpass that extends approximately from 350 nm to 850 nm. LORRI operates in an extreme thermal environment, situated inside the warm spacecraft with a large, open aperture viewing cold space. LORRI has a silicon carbide optical system, designed to maintain focus over the operating temperature range without a focus adjustment mechanism. Moreover, the spacecraft is thruster-stabilized without reaction wheels, placing stringent limits on the available exposure time and the optical throughput needed to satisfy the measurement requirements.
The cosmic optical background is an important observable that constrains energy production in stars and more exotic physical processes in the universe, and provides a crucial cosmological benchmark against which to judge theories of structure formati on. Measurement of the absolute brightness of this background is complicated by local foregrounds like the Earths atmosphere and sunlight reflected from local interplanetary dust, and large discrepancies in the inferred brightness of the optical background have resulted. Observations from probes far from the Earth are not affected by these bright foregrounds. Here we analyze data from the Long Range Reconnaissance Imager (LORRI) instrument on NASAs New Horizons mission acquired during cruise phase outside the orbit of Jupiter, and find a statistical upper limit on the optical backgrounds brightness similar to the integrated light from galaxies. We conclude that a carefully performed survey with LORRI could yield uncertainties comparable to those from galaxy counting measurements.
The Gemini Planet Imager is a newly commissioned facility instrument designed to measure the near-infrared spectra of young extrasolar planets in the solar neighborhood and obtain imaging polarimetry of circumstellar disks. GPIs science instrument is an integral field spectrograph that utilizes a HAWAII-2RG detector with a SIDECAR ASIC readout system. This paper describes the detector characterization and calibrations performed by the GPI Data Reduction Pipeline to compensate for effects including bad/hot/cold pixels, persistence, non-linearity, vibration induced microphonics and correlated read noise.
We discuss two semi-independent calibration techniques used to determine the in-flight radiometric calibration for the New Horizons Multi-spectral Visible Imaging Camera (MVIC). The first calibration technique compares the observed stellar flux to mo deled values. The difference between the two provides a calibration factor that allows the observed flux to be adjusted to the expected levels for all observations, for each detector. The second calibration technique is a channel-wise relative radiometric calibration for MVICs blue, near-infrared and methane color channels using observations of Charon and scaling from the red channel stellar calibration. Both calibration techniques produce very similar results (better than 7% agreement), providing strong validation for the techniques used. Since the stellar calibration can be performed without a color target in the field of view and covers all of MVICs detectors, this calibration was used to provide the radiometric keywords delivered by the New Horizons project to the Planetary Data System (PDS). These keywords allow each observation to be converted from counts to physical units; a description of how these keywords were generated is included. Finally, mitigation techniques adopted for the gain drift observed in the near-infrared detector and one of the panchromatic framing cameras is also discussed.
The New Horizons instrument named Ralph is a visible/near infrared multi-spectral imager and a short wavelength infrared spectral imager. It is one of the core instruments on New Horizons, NASAs first mission to the Pluto/Charon system and the Kuiper Belt. Ralph combines panchromatic and color imaging capabilities with IR imaging spectroscopy. Its primary purpose is to map the surface geology and composition of these objects, but it will also be used for atmospheric studies and to map the surface temperature. It is a compact, low-mass (10.5 kg), power efficient (7.1 W peak), and robust instrument with good sensitivity and excellent imaging characteristics. Other than a door opened once in flight, it has no moving parts. These characteristics and its high degree of redundancy make Ralph ideally suited to this long-duration flyby reconnaissance mission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا