ترغب بنشر مسار تعليمي؟ اضغط هنا

Sum Rate Maximization for Reconfigurable Intelligent Surface Assisted Device-to-Device Communications

107   0   0.0 ( 0 )
 نشر من قبل Tiejun Lv
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter, we propose to employ reconfigurable intelligent surfaces (RISs) for enhancing the D2D underlaying system performance. We study the joint power control, receive beamforming, and passive beamforming for RIS assisted D2D underlaying cellular communication systems, which is formulated as a sum rate maximization problem. To address this issue, we develop a block coordinate descent method where uplink power, receive beamformer and refection phase shifts are alternatively optimized. Then, we provide the closed-form solutions for both uplink power and receive beamformer. We further propose a quadratic transform based semi-definite relaxation algorithm to optimize the RIS phase shifts, where the original passive beamforming problem is translated into a separable quadratically constrained quadratic problem. Numerical results demonstrate that the proposed RIS assisted design significantly improves the sum-rate performance.



قيم البحث

اقرأ أيضاً

112 - Yashuai Cao , Tiejun Lv , Wei Ni 2021
This paper proposes to deploy multiple reconfigurable intelligent surfaces (RISs) in device-to-device (D2D)-underlaid cellular systems. The uplink sum-rate of the system is maximized by jointly optimizing the transmit powers of the users, the pairing of the cellular users (CUs) and D2D links, the receive beamforming of the base station (BS), and the configuration of the RISs, subject to the power limits and quality-of-service (QoS) of the users. To address the non-convexity of this problem, we develop a new block coordinate descent (BCD) framework which decouples the D2D-CU pairing, power allocation and receive beamforming, from the configuration of the RISs. Specifically, we derive closed-form expressions for the power allocation and receive beamforming under any D2D-CU pairing, which facilitates interpreting the D2D-CU pairing as a bipartite graph matching solved using the Hungarian algorithm. We transform the configuration of the RISs into a quadratically constrained quadratic program (QCQP) with multiple quadratic constraints. A low-complexity algorithm, named Riemannian manifold-based alternating direction method of multipliers (RM-ADMM), is developed to decompose the QCQP into simpler QCQPs with a single constraint each, and solve them efficiently in a decentralized manner. Simulations show that the proposed algorithm can significantly improve the sum-rate of the D2D-underlaid system with a reduced complexity, as compared to its alternative based on semidefinite relaxation (SDR).
Reconfigurable intelligent surfaces (RIS) is a promising solution to build a programmable wireless environment via steering the incident signal in fully customizable ways with reconfigurable passive elements. In this paper, we consider a RIS-aided mu ltiuser multiple-input single-output (MISO) downlink communication system. Our objective is to maximize the weighted sum-rate (WSR) of all users by joint designing the beamforming at the access point (AP) and the phase vector of the RIS elements, while both the perfect channel state information (CSI) setup and the imperfect CSI setup are investigated. For perfect CSI setup, a low-complexity algorithm is proposed to obtain the stationary solution for the joint design problem by utilizing the fractional programming technique. Then, we resort to the stochastic successive convex approximation technique and extend the proposed algorithm to the scenario wherein the CSI is imperfect. The validity of the proposed methods is confirmed by numerical results. In particular, the proposed algorithm performs quite well when the channel uncertainty is smaller than 10%.
Reconfigurable intelligent surfaces (RISs) comprised of tunable unit cells have recently drawn significant attention due to their superior capability in manipulating electromagnetic waves. In particular, RIS-assisted wireless communications have the great potential to achieve significant performance improvement and coverage enhancement in a cost-effective and energy-efficient manner, by properly programming the reflection coefficients of the unit cells of RISs. In this paper, free-space path loss models for RIS-assisted wireless communications are developed for different scenarios by studying the physics and electromagnetic nature of RISs. The proposed models, which are first validated through extensive simulation results, reveal the relationships between the free-space path loss of RIS-assisted wireless communications and the distances from the transmitter/receiver to the RIS, the size of the RIS, the near-field/far-field effects of the RIS, and the radiation patterns of antennas and unit cells. In addition, three fabricated RISs (metasurfaces) are utilized to further corroborate the theoretical findings through experimental measurements conducted in a microwave anechoic chamber. The measurement results match well with the modeling results, thus validating the proposed free-space path loss models for RIS, which may pave the way for further theoretical studies and practical applications in this field.
209 - Hong Shen , Wei Xu , Shulei Gong 2019
We investigate transmission optimization for intelligent reflecting surface (IRS) assisted multi-antenna systems from the physical-layer security perspective. The design goal is to maximize the system secrecy rate subject to the source transmit power constraint and the unit modulus constraints imposed on phase shifts at the IRS. To solve this complicated non-convex problem, we develop an efficient alternating algorithm where the solutions to the transmit covariance of the source and the phase shift matrix of the IRS are achieved in closed form and semi-closed forms, respectively. The convergence of the proposed algorithm is guaranteed theoretically. Simulations results validate the performance advantage of the proposed optimized design.
In this letter, an intelligent reflecting surface (IRS) enhanced full-duplex MIMO two-way communication system is studied. The system sum rate is maximized through jointly optimizing the source precoders and the IRS phase shift matrix. Adopting the i dea of Arimoto-Blahut algorithm, the non-convex optimization problem is decoupled into three sub-problems, which are solved alternatingly. All the sub-problems can be solved efficiently with closed-form solutions. In addition, practical IRS assumptions, e.g., discrete phase shift levels, are also considered. Numerical results verify the convergence and performance of the proposed scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا