ﻻ يوجد ملخص باللغة العربية
The gravitational deflection angle of light for an observer and source at finite distance from a lens object has been studied by Ishihara et al. [Phys. Rev. D, 94, 084015 (2016)], based on the Gauss-Bonnet theorem with using the optical metric. Their approach to finite-distance cases is limited within an asymptotically flat spacetime. By making several assumptions, we give an interpretation of their definition from the observers viewpoint: The observer assumes the direction of a hypothetical light emission at the observer position and makes a comparison between the fiducial emission direction and the direction along the real light ray. The angle between the two directions at the observer location can be interpreted as the deflection angle by Ishihara et al. The present interpretation does not require the asymptotic flatness. Motivated by this, we avoid such asymptotic regions to discuss another integral form of the deflection angle of light. This form makes it clear that the proposed deflection angle can be used not only for asymptotically flat spacetimes but also for asymptotically nonflat ones. We examine the proposed deflection angle in two models for the latter case; Kottler (Schwarzschild-de Sitter) solution in general relativity and a spherical solution in Weyl conformal gravity. Effects of finite distance on the light deflection in Weyl conformal gravity result in an extra term in the deflection angle, which may be marginally observable in a certain parameter region. On the other hand, those in Kottler spacetime are beyond reach of the current technology.
By using a method improved with a generalized optical metric, the deflection of light for an observer and source at finite distance from a lens object in a stationary, axisymmetric and asymptotically flat spacetime has been recently discussed [Ono, I
By using a method improved with a generalized optical metric, the deflection of light for an observer and source at finite distance from a lens object in a stationary, axisymmetric and asymptotically flat spacetime has been recently discussed [Ono, I
Continuing work initiated in an earlier publication [Ishihara, Suzuki, Ono, Kitamura, Asada, Phys. Rev. D {bf 94}, 084015 (2016) ], we discuss a method of calculating the bending angle of light in a static, spherically symmetric and asymptotically fl
We calculate the exact solutions to the equations of motion that govern the light ray trajectories as they travel in a Kerr black holes exterior that is considered to be filled with an inhomogeneous and anisotropic plasmic medium. This is approached
In order to clarify effects of the finite distance from a lens object to a light source and a receiver, the gravitational deflection of light has been recently reexamined by using the Gauss-Bonnet (GB) theorem in differential geometry [Ishihara et al