ﻻ يوجد ملخص باللغة العربية
Liquid crystals (LCs) composed of mesogens play important roles in various scientific and engineering problems. How a system with many mesogens can enter a LC state is an interesting and important problem. Using stiff and free-joint Lennard-Jones chain molecules as mesogens, we study the conditions under which the mesogens can enter various LC phases. The guideline is to eliminate the unwanted translational orders under a controlled fine-tuning procedure across a sequence of systems. Instead of monitoring the growth of order out of the disorder, we prepare a configuration of high orientation ordering and find out where it relaxes to. Such a procedure begins with a reference system, consisting of short chains of homogeneous soft spheres, in a liquid-vapor coexistence situation, at which the thermodynamic instability triggers a fast spontaneous growing process. By applying a short pulse of auxiliary field to align the dispersedly oriented clusters, followed by reducing the volume and, finally, changing the homogeneous molecules into heterogeneous chains, we are able to obtain a range of systems, including nematic and smectic LCs, at their stable ordered states. The model can be extended to study the influence of nanoparticles or external field on the LC structure.
Combining the recent Piskulich-Thompson approach [Z. A. Piskulich and W. H. Thompson, {it J. Chem. Phys.} {bf 152}, 011102 (2020)] with isomorph theory, from a single simulation, the structure of a single-component Lennard-Jones (LJ) system is obtain
We present in this paper a detailed analysis of the flexoelectric instability of a planar nematic layer in the presence of an alternating electric field (frequency $omega$), which leads to stripe patterns (flexodomains) in the plane of the layer. Thi
In recent years lines along which structure and dynamics are invariant to a good approximation, so-called isomorphs, have been identified in the thermodynamic phase diagrams of several model liquids and solids. This paper reports computer simulations
Longitudinal and transverse sound velocities of Lennard-Jones systems are calculated at the liquid-solid coexistence using the additivity principle. The results are shown to agree well with the ``exact values obtained from their relations to excess e
Ultracold systems offer an unprecedented level of control of interactions between atoms. An important challenge is to achieve a similar level of control of the interactions between photons. Towards this goal, we propose a realization of a novel Lenna