ترغب بنشر مسار تعليمي؟ اضغط هنا

Observed $Omega_b$ spectrum and meson-baryon molecular states

91   0   0.0 ( 0 )
 نشر من قبل Wei-Hong Liang
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We observe that four peaks seen in the high energy part of the $Omega_b$ spectrum of the recent LHCb experiment are in remarkable agreement with predictions made for molecular $Omega_b$ states stemming from the meson-baryon interaction, with an approach that applied to the $Omega_c$ states gave rise to three states in good agreement with experiment in masses and widths. While the statistical significance of the peaks prevents us from claims of states at the present time, the agreement found should be an incentive to look at this experiment with increased statistics to give an answer to this suggestive idea.



قيم البحث

اقرأ أيضاً

Motivated by the recent finding of five $Omega_c$ states by the LHCb collaboration, and the successful reproduction of three of them in a recent approach searching for molecular states of meson-baryon with the quantum numbers of $Omega_c$, we extend these ideas and make predictions for the interaction of meson-baryon in the beauty sector, searching for poles in the scattering matrix that correspond to physical states. We find several $Omega_b$ states: two states with masses 6405~MeV and 6465~MeV for $J^P= frac{1}{2}^-$; two more states with masses 6427~MeV and 6665~MeV for $frac{3}{2}^-$; and three states between 6500 and 6820~MeV, degenerate with $J^P=frac{1}{2}^-,,frac{3}{2}^-$, stemming from the interaction of vector-baryon in the beauty sector.
We present results of meson and baryon spectroscopy using the Chirally Improved Dirac operator on lattices of size 16**3 x 32 with two mass-degenerate light sea quarks. Three ensembles with pion masses of 322(5), 470(4) and 525(7) MeV and lattice spa cings close to 0.15 fm are investigated. Results on ground and excited states for several channels are given, including spin two mesons and hadrons with strange valence quarks. The analysis of the states is done with the variational method, including two kinds of Gaussian sources and derivative sources. We obtain several ground states fairly precisely and find radial excitations in various channels. Excited baryon results seem to suffer from finite size effects, in particular at small pion masses. We discuss the possible appearance of scattering states in various channels, considering masses and eigenvectors. Partially quenched results in the scalar channel suggest the presence of a 2-particle state, however, in most channels we cannot identify them. Where available, we compare our results to results of quenched simulations using the same action.
We have studied the meson-baryon interaction in coupled channels with the same quantum numbers of $Xi_{bc}$. The interaction is attractive in some channels and of sufficient intensity to lead to bound states or resonances. We use a model describing t he meson-baryon interaction based on an extrapolation of the local hidden gauge approach to the heavy sector, which has been successfully used in predicting $Omega_c$ and hidden charm states. We obtain many states, some of them narrow or with zero width, as a consequence of the interaction, which qualify as molecular states in those channels. The success in related sectors of the picture used should encourage the experimental search for such states.
We have investigated $Omega_c$ states that are dynamically generated from the meson-baryon interaction. We use an extension of the local hidden gauge to obtain the interaction from the exchange of vector mesons. We show that the dominant terms come f rom the exchange of light vectors, where the heavy quarks are spectators. This has as a consequence that heavy quark symmetry is preserved for the dominant terms in the $(1/m_Q)$ counting, and also that the interaction in this case can be obtained from the $textrm{SU(3)}$ chiral Lagrangians. We show that for a standard value for the cutoff regulating the loop, we obtain two states with $J^{P}={1/2}^{-}$ and two more with $J^{P}={3/2}^{-}$, three of them in remarkable agreement with three experimental states in mass and width. We also make predictions at higher energies for states of vector-baryon nature.
Combining the recent developments of the observations of $Omega$ sates we calculate the $Omega$ spectrum up to the $N=2$ shell within a nonrelativistic constituent quark potential model. Furthermore, the strong and radiative decay properties for the $Omega$ resonances within the $N=2$ shell are evaluated by using the masses and wave functions obtained from the potential model. It is found that the newly observed $Omega(2012)$ resonance is most likely to be the spin-parity $J^P=3/2^-$ $1P$-wave state $Omega(1^{2}P_{3/2^{-}})$, it also has a large potential to be observed in the $Omega(1672)gamma$ channel. Our calculation shows that the 1$P$-, 1$D$-, and 2$S$-wave $Omega$ baryons have a relatively narrow decay width of less than 50 MeV. Based on the obtained decay properties and mass spectrum, we further suggest optimum channels and mass regions to find the missing $Omega$ resonances via the strong and/or radiative decay processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا