ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergence of Quark-Gluon Plasma Phenomena

104   0   0.0 ( 0 )
 نشر من قبل Jan Fiete Grosse-Oetringhaus
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of QGP phenomena in small collision systems like pp and p-Pb collisions have challenged the basic paradigms of heavy-ion and high-energy physics. These proceedings give a brief overview of the key findings and their implications, as well as todays experimental and theoretical situation. An outlook of future measurement is made.



قيم البحث

اقرأ أيضاً

63 - Jinfeng Liao 2016
Heavy-ion collision experiments at RHIC and the LHC have found a new emergent phase of QCD, a strongly coupled quark-gluon plasma (sQGP) that is distinctively different from either the low temperature hadron phase or the very high temperature weakly coupled plasma phase. Highly nontrivial emergent phenomena occur in such sQGP and two examples will be discussed in this contribution: the magnetic component of sQGP that stems from topologically nontrivial configurations in the gluon sector; and the anomalous chiral transport that arises as macroscopic manifestation of microscopic chiral anomaly in the quark sector. For both examples, their important roles in explaining pertinent heavy-ion data will be emphasized.
We study the propagation of energy density perturbation in a hot, ideal quark-gluon medium in which quarks and gluons follow the Tsallis-like momentum distributions. We have observed that a non-extensive MIT bag equation of state obtained with the he lp of the quantum Tsallis-like distributions gives rise to a breaking wave solution of the equation dictating the evolution of energy density perturbation. However, the breaking of waves is delayed when the value of the Tsallis q parameter and the Tsallis temperature T are higher.
246 - Berndt Muller 2021
Brief review of the hadronic probes that are used to diagnose the quark-gluon plasma produced in relativistic heavy ion collisions and interrogate its properties. Emphasis is placed on probes that have significantly impacted our understanding of the nature of the quark-gluon plasma and confirmed its formation.
101 - Johanna Stachel 2005
Data from the first three years of running at RHIC are reviewed and put into context with data obtained previously at the AGS and SPS and with the physics question of creation of a quark-gluon plasma in high energy heavy ion collisions. Also some ver y recent and still preliminary data from run4 are included.
We study the evolution of the quark-gluon composition of the plasma created in ultra-Relativistic Heavy-Ion Collisions (uRHICs) employing a partonic transport theory that includes both elastic and inelastic collisions plus a mean fields dynamics asso ciated to the widely used quasi-particle model. The latter, able to describe lattice QCD thermodynamics, implies a chemical equilibrium ratio between quarks and gluons strongly increasing as $Trightarrow T_c$, the phase transition temperature. Accordingly we see in realistic simulations of uRHICs a rapid evolution from a gluon dominated initial state to a quark dominated plasma close to $T_c$. The quark to gluon ratio can be modified by about a factor of $sim 20$ in the bulk of the system and appears to be large also in the high $p_T$ region. We discuss how this aspect, often overflown, can be important for a quantitative study of several key issues in the QGP physics: shear viscosity, jet quenching, quarkonia suppression. Furthermore a bulk plasma made by more than $80%$ of quarks plus antiquarks provides a theoretical basis for hadronization via quark coalescence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا