ﻻ يوجد ملخص باللغة العربية
It is shown that the Ellis semigroup of a $mathbb Z$-action on a compact totally disconnected space is completely regular if and only if forward proximality coincides with forward asymptoticity and backward proximality coincides with backward asymptoticity. Furthermore, the Ellis semigroup of a $mathbb Z$- or $mathbb R$-action for which forward proximality and backward proximality are transitive relations is shown to have at most two left minimal ideals. Finally, the notion of near simplicity of the Ellis semigroup is introduced and related to the above.
We obtain a sufficient condition for a substitution ${mathbb Z}$-action to have pure singular spectrum in terms of the top Lyapunov exponent of the spectral cocycle introduced in arXiv:1802.04783 by the authors. It is applied to a family of examples,
In this paper, entropies, including measure-theoretic entropy and topological entropy, are considered for random $mathbb{Z}^k$-actions which are generated by random compositions of the generators of $mathbb{Z}^k$-actions. Applying Pesins theory for c
In this paper, directional sequence entropy and directional Kronecker algebra for $mathbb{Z}^q$-systems are introduced. The relation between sequence entropy and directional sequence entropy are established. Meanwhile, direcitonal discrete spectrum s
We study the problem of embedding arbitrary $mathbb{Z}^k$-actions into the shift action on the infinite dimensional cube $left([0,1]^Dright)^{mathbb{Z}^k}$. We prove that if a $mathbb{Z}^k$-action satisfies the marker property (in particular if it is
We study directional mean dimension of $mathbb{Z}^k$-actions (where $k$ is a positive integer). On the one hand, we show that there is a $mathbb{Z}^2$-action whose directional mean dimension (considered as a $[0,+infty]$-valued function on the torus)