ﻻ يوجد ملخص باللغة العربية
Space charge formation in chromium-compensated GaAs sensors is investigated by the laser-induced transient current technique applying pulsed and DC bias. Formation of non-standard space charge manifested by an appearance of both negatively and positively charged regions in DC biased sensors was revealed during 5 ms after switching bias. Using Monte Carlo simulations of current transients we determined enhanced electron lifetime {tau} = 150 ns and electron drift mobility {mu}d = 3650 cm2/Vs. We developed and successfully applied theoretical model based on fast hole trapping in the system with spatially variable hole conductivity.
Thin coatings of Chromium oxide have been used for applications as absorbing material in solar cells, as protections for magnetic data recording devices and as shields in flexible solar cells. Thin coatings of pure chromium were vacuum deposited on a
We report here a general theory describing photoelectron transportation dynamics in GaAs semiconductor photocathodes. Gradient doping is incorporated in the model through the inclusion of directional carrier drift. The time-evolution of electron conc
The motivation for investigating the use of GaAs as a material for detecting particles in experiments for High Energy Physics (HEP) arose from its perceived resistance to radiation damage. This is a vital requirement for detector materials that are t
The layers of a high-temperature novel GaAs:Fe diluted magnetic semiconductor (DMS) with an average Fe content up to 20 at. % were grown on (001) i-GaAs substrates using a pulsed laser deposition in a vacuum. The transmission electron microscopy (TEM
Experimental observations have long-established that there exists a smooth roll-off or knee transition between the temperature-limited (TL) and full-space-charge-limited (FSCL) emission regions of the emission current density-temperature J-T (Miram)