ترغب بنشر مسار تعليمي؟ اضغط هنا

Transient Electronic Phase Separation During Metal-Insulator Transitions

176   0   0.0 ( 0 )
 نشر من قبل Yin Shi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

From thermodynamic analysis we demonstrate that during metal-insulator transitions in pure matters, a nonequilibrium homogeneous state may be unstable against charge density modulations with certain wavelengths, and thus evolves to the equilibrium phase through transient electronic phase separation. This phase instability occurs as two inequalities between the first and the second derivatives of the free energy with respect to the order parameter are fulfilled. The dominant wavelength of the modulated phase is also derived. The computer simulation further confirms the theoretical derivation. Employing the pre-established phase-field model of VO$_2$, we show that this transient electronic phase separation may take place in VO$_2$ upon photoexcitation.

قيم البحث

اقرأ أيضاً

A detailed magnetoresistance study of bulk and microflake samples of highly oriented pyrolytic graphite with a thickness of 25 $mu$m to 23~nm reveals that the usually observed field-induced metal-insulator and electronic phase transitions vanish in t hinner samples. The observed suppression is accompanied by orders of magnitude decrease of the magnetoresistance and of the amplitude of the Shubnikov-de-Haas oscillations. The overall behavior is related to the decrease in the quantity of two-dimensional interfaces between crystalline regions of the same and different stacking orders present in graphite samples. Our results indicate that these field-induced transitions are not intrinsic to the ideal graphite structure and, therefore, a relevant portion of the published interpretations should be reconsidered.
Nucleation processes of mixed-phase states are an intrinsic characteristic of first-order phase transitions, typically related to local symmetry breaking. Direct observation of emerging mixed-phase regions in materials showing a first-order metal-ins ulator transition (MIT) offers unique opportunities to uncover their driving mechanism. Using photoemission electron microscopy, we image the nanoscale formation and growth of insulating domains across the temperature-driven MIT in NdNiO3 epitaxial thin films. Heteroepitaxy is found to strongly determine the nanoscale nature of the phase transition, inducing preferential formation of striped domains along the terraces of atomically flat stepped surfaces. We show that the distribution of transition temperatures is an intrinsic local property, set by surface morphology and stable across multiple temperature cycles. Our data provides new insights into the MIT of heteroepitaxial nickelates and points to a rich, nanoscale phenomenology in this strongly correlated material.
From measurements of fluctuation spectroscopy and weak nonlinear transport on the semimetallic ferromagnet EuB$_6$ we find direct evidence for magnetically-driven electronic phase separation consistent with the picture of percolation of magnetic pola rons (MP), which form highly conducting magnetically-ordered clusters in a paramagnetic and poorly conducting background. These different parts of the conducting network are probed separately by the noise spectroscopy/nonlinear transport and the conventional linear resistivity. We suggest a comprehensive and universal scenario for the MP percolation, which occurs at a critical magnetization either induced by ferromagnetic order at zero field or externally applied magnetic fields in the paramagentic region.
The competition between collective quantum phases in materials with strongly correlated electrons depends sensitively on the dimensionality of the electron system, which is difficult to control by standard solid-state chemistry. We have fabricated su perlattices of the paramagnetic metal LaNiO3 and the wide-gap insulator LaAlO3 with atomically precise layer sequences. Using optical ellipsometry and low-energy muon spin rotation, superlattices with LaNiO3 as thin as two unit cells are shown to undergo a sequence of collective metalinsulator and antiferromagnetic transitions as a function of decreasing temperature, whereas samples with thicker LaNiO3 layers remain metallic and paramagnetic at all temperatures. Metal-oxide superlattices thus allow control of the dimensionality and collective phase behavior of correlated-electron systems.
The discovery of novel phases of matter is at the core of modern physics. In quantum materials, subtle variations in atomic-scale interactions can induce dramatic changes in macroscopic properties and drive phase transitions. Despite their importance , the mesoscale processes underpinning phase transitions often remain elusive because of the vast differences in timescales between atomic and electronic changes and thermodynamic transformations. Here, we photoinduce and directly observe with x-ray scattering an ultrafast enhancement of the structural long-range order in the archetypal Mott system V2O3. Despite the ultrafast change in crystal symmetry, the change of unit cell volume occurs an order of magnitude slower and coincides with the insulator-to-metal transition. The decoupling between the two structural responses in the time domain highlights the existence of a transient photoinduced precursor phase, which is distinct from the two structural phases present in equilibrium. X-ray nanoscopy reveals that acoustic phonons trapped in nanoscale blocks govern the dynamics of the ultrafast transition into the precursor phase, while nucleation and growth of metallic domains dictate the duration of the slower transition into the metallic phase. The enhancement of the long-range order before completion of the electronic transition demonstrates the critical role the non-equilibrium structural phases play during electronic phase transitions in correlated electrons systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا