ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of Pulsar Radio Emission

139   0   0.0 ( 0 )
 نشر من قبل Alexander Philippov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since pulsars were discovered as emitters of bright coherent radio emission more than half a century ago, the cause of the emission has remained a mystery. In this Letter we demonstrate that coherent radiation can be directly generated in non-stationary pair plasma discharges which are responsible for filling the pulsar magnetosphere with plasma. By means of large-scale two-dimensional kinetic plasma simulations, we show that if pair creation is non-uniform across magnetic field lines, the screening of electric field by freshly produced pair plasma is accompanied by the emission of waves which are electromagnetic in nature. Using localized simulations of the screening process, we identify these waves as superluminal ordinary (O) modes, which should freely escape from the magnetosphere as the plasma density drops along the wave path. The spectrum of the waves is broadband and the frequency range is comparable to that of observed pulsar radio emission.



قيم البحث

اقرأ أيضاً

121 - J. A. Eilek , T. H. Hankins 2016
We review our high-time-resolution radio observations of the Crab pulsar and compare our data to a variety of models for the emission physics. The Main Pulse and the Low-Frequency Interpulse come from regions somewhere in the high-altitude emission z ones (caustics) that also produce pulsed X-ray and gamma-ray emission. Although no emission model can fully explain these two components, the most likely models suggest they arise from a combination of beam-driven instabilities, coherent charge bunching and strong electromagnetic turbulence. Because the radio power fluctuates on a wide range of timescales, we know the emission zones are patchy and dynamic. It is tempting to invoke unsteady pair creation in high-altitude gaps as source of the variability, but current pair cascade models cannot explain the densities required by any of the likely models. It is harder to account for the mysterious High-Frequency Interpulse. We understand neither its origin within the magnetosphere nor the striking emission bands in its dynamic spectrum. The most promising models are based on analogies with solar zebra bands, but they require unusual plasma structures which are not part of our standard picture of the magnetosphere. We argue that radio observations can reveal much about the upper magnetosphere, but work is required before the models can address all of the data.
105 - Q.D.Wu , Q.J.Zhi , C.M.Zhang 2020
We investigated the pulsar radio luminosity ($L$), emission efficiency (ratio of radio luminosity to its spin-down power $dot{E}$), and death line in the diagram of magnetic field (B) versus spin period (P), and found that the dependence of pulsar ra dio luminosity on its spin-down power ($L-dot{E}$) is very weak, shown as $Lsimdot{E}^{0.06}$, which deduces an equivalent inverse correlation between emission efficiency and spin-down power as $xisim dot{E}^{-0.94}$. Furthermore, we examined the distributions of radio luminosity of millisecond and normal pulsars, and found that, for the similar spin-down powers, the radio luminosity of millisecond pulsars is about one order of magnitude lower than that of the normal pulsars. The analysis of pulsar radio flux suggests that this correlations are not due to a selective effect, but are intrinsic to the pulsar radio emission physics. Their radio radiations may be dominated by the different radiation mechanisms. The cut-off phenomenon of currently observed radio pulsars in B-P diagram is usually referred as the pulsar death line, which corresponds to $dot{E}approx 10^{30}$ erg/s and is obtained by the cut-off voltage of electron acceleration gap in the polar cap model of pulsar proposed by Ruderman and Sutherland. Observationally, this death line can be inferred by the actual observed pulsar flux $Sapprox $1mJy and 1kpc distance, together with the maximum radio emission efficiency of 1%. At present, the actual observed pulsar flux can reach 0.01mJy by FAST telescope, which will arise the observational limit of spin-down power of pulsar as low as $dot{E}approx 10^28$ erg/s. This means that the new death line is downward shifted two orders of magnitude, which might be favorably referred as the observational limit-line, and accordingly the pulsar theoretical model for the cut-off voltage of gap should be heavily modified.
Rotation-powered pulsars and magnetars are two different observational manifestations of neutron stars: rotation powered pulsars are rapidly spinning objects that are mostly observed as pulsating radio sources, while magnetars, neutron stars with the highest known magnetic fields, often emit short-duration X-ray bursts. Here we report simultaneous observations of the high-magnetic-field radio pulsar PSR J1119-6127 at X-ray, with XMM-Newton & NuSTAR, and at radio energies with Parkes radio telescope, during a period of magnetar-like bursts. The rotationally powered radio emission shuts off coincident with the occurrence of multiple X-ray bursts, and recovers on a time scale of ~70 seconds. These observations of related radio and X-ray phenomena further solidify the connection between radio pulsars and magnetars, and suggest that the pair plasma produced in bursts can disrupt the acceleration mechanism of radio emitting particles.
In this Letter we propose that coherent radio emission of Crab, other young energetic pulsars, and millisecond pulsars is produced in the magnetospheric current sheet beyond the light cylinder. We carry out global and local two-dimensional kinetic pl asma simulations of reconnection to illustrate the coherent emission mechanism. Reconnection in the current sheet beyond the light cylinder proceeds in the very efficient plasmoid-dominated regime, and current layer gets fragmented into a dynamic chain of plasmoids which undergo successive coalescence. Mergers of sufficiently large plasmoids produce secondary perpendicular current sheets, which are also plasmoid-unstable. Collisions of plasmoids with each other and with the upstream magnetic field eject fast-magnetosonic waves, which propagate upstream across the background field and successfully escape from the plasma as electromagnetic waves that fall in the radio band. This model successfully explains many important features of the observed radio emission from Crab and other pulsars with high magnetic field at the light cylinder: phase coincidence with the high-energy emission, nano-second duration (nanoshots), and extreme instantaneous brightness of individual pulses.
It is shown that pulsar radio emission can be generated effectively through a streaming motion in the polar-cap regions of a pulsar magnetosphere causing nonresonant growth of waves that can escape directly. As in other beam models, a relatively low- energy high-density beam is required. The instability generates quasi-transverse waves in a beam mode at frequencies that can be well below the resonant frequency. As the waves propagate outward growth continues until the height at which the wave frequency is equal to the resonant frequency. Beyond this point the waves escape in a natural plasma mode (L-O mode). This one-step mechanism is much more efficient than previously widely considered multi-step mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا