ﻻ يوجد ملخص باللغة العربية
Understanding how galaxy properties are linked to the dark matter halos they reside in, and how they co-evolve is a powerful tool to constrain the processes related to galaxy formation. The stellar-to-halo mass relation (SHMR) and its evolution over the history of the Universe provides insights on galaxy formation models and allows to assign galaxy masses to halos in N-body dark matter simulations. We use a statistical approach to link the observed galaxy stellar mass functions on the COSMOS field to dark matter halo mass functions from the DUSTGRAIN simulation and from a theoretical parametrization from z=0 to z=4. We also propose an empirical model to describe the evolution of the stellar-to-halo mass relation as a function of redshift. We calculate the star-formation efficiency (SFE) of galaxies and compare results with previous works and semi-analytical models.
We contend that a single power law halo mass distribution is appropriate for direct matching to the stellar masses of observed Local Group dwarf galaxies, allowing the determination of the slope of the stellar mass-halo mass relation for low mass gal
Concentration is one of the key dark matter halo properties that could drive the scatter in the stellar-to-halo mass relation of massive clusters. We derive robust photometric stellar masses for a sample of brightest central galaxies (BCGs) in SDSS r
A number of recent challenges to the standard Lambda-CDM paradigm relate to discrepancies that arise in comparing the abundance and kinematics of local dwarf galaxies with the predictions of numerical simulations. Such arguments rely heavily on the a
We examine the present-day total stellar-to-halo mass (SHM) ratio as a function of halo mass for a new sample of simulated field galaxies using fully cosmological, LCDM, high resolution SPH + N-Body simulations.These simulations include an explicit t
In the hierarchical formation model, galaxy clusters grow by accretion of smaller groups or isolated galaxies. During the infall into the centre of a cluster, the properties of accreted galaxies change. In particular, both observations and numerical