ﻻ يوجد ملخص باللغة العربية
Video super-resolution (SR) aims at generating a sequence of high-resolution (HR) frames with plausible and temporally consistent details from their low-resolution (LR) counterparts. The key challenge for video SR lies in the effective exploitation of temporal dependency between consecutive frames. Existing deep learning based methods commonly estimate optical flows between LR frames to provide temporal dependency. However, the resolution conflict between LR optical flows and HR outputs hinders the recovery of fine details. In this paper, we propose an end-to-end video SR network to super-resolve both optical flows and images. Optical flow SR from LR frames provides accurate temporal dependency and ultimately improves video SR performance. Specifically, we first propose an optical flow reconstruction network (OFRnet) to infer HR optical flows in a coarse-to-fine manner. Then, motion compensation is performed using HR optical flows to encode temporal dependency. Finally, compensated LR inputs are fed to a super-resolution network (SRnet) to generate SR results. Extensive experiments have been conducted to demonstrate the effectiveness of HR optical flows for SR performance improvement. Comparative results on the Vid4 and DAVIS-10 datasets show that our network achieves the state-of-the-art performance.
Video super-resolution (SR) aims to generate a sequence of high-resolution (HR) frames with plausible and temporally consistent details from their low-resolution (LR) counterparts. The generation of accurate correspondence plays a significant role in
Video super-resolution (VSR), with the aim to restore a high-resolution video from its corresponding low-resolution version, is a spatial-temporal sequence prediction problem. Recently, Transformer has been gaining popularity due to its parallel comp
In the learning based video compression approaches, it is an essential issue to compress pixel-level optical flow maps by developing new motion vector (MV) encoders. In this work, we propose a new framework called Resolution-adaptive Flow Coding (RaF
This paper explores an efficient solution for Space-time Super-Resolution, aiming to generate High-resolution Slow-motion videos from Low Resolution and Low Frame rate videos. A simplistic solution is the sequential running of Video Super Resolution
Most video super-resolution methods focus on restoring high-resolution video frames from low-resolution videos without taking into account compression. However, most videos on the web or mobile devices are compressed, and the compression can be sever