ﻻ يوجد ملخص باللغة العربية
The Kelvin-Helmholtz instability serves as a simple, well-defined setup for assessing the accuracy of different numerical methods for solving the equations of hydrodynamics. We use it to extend our previous analysis of the convergence and the numerical dissipation in models of the propagation of waves and in the tearing-mode instability in magnetohydrodynamic models. To this end, we perform two-dimensional simulations with and without explicit physical viscosity at different resolutions. A comparison of the growth of the modes excited by our initial perturbations allows us to estimate the effective numerical viscosity of two spatial reconstruction schemes (fifth-order monotonicity preserving and second-order piecewise linear schemes).
The method of Smoothed Particle Hydrodynamics (SPH) has been widely studied and implemented for a large variety of problems, ranging from astrophysics to fluid dynamics and elasticity problems in solids. However, the method is known to have several d
There has been interest in recent years to assess the ability of astrophysical hydrodynamics codes to correctly model the Kelvin-Helmholtz instability. Smoothed particle hydrodynamics (SPH), in particular, has received significant attention, though t
We perform simulations of the Kelvin-Helmholtz instability using smoothed particle hydrodynamics (SPH). The instability is studied both in the linear and strongly non-linear regimes. The smooth, well-posed initial conditions of Lecoanet et al. (2016)
The analysis of the stability properties of astrophysical jets against Kelvin-Helmholtz (or shear-layer) instabilities plays a basic role in the understanding the origin and physical characteristics of these objects. Numerical simulations by Bodo et
We provide numerical evidence that a Kelvin-Helmholtz instability occurs in the Dirac fluid of electrons in graphene and can be detected in current experiments. This instability appears for electrons in the viscous regime passing though a micrometer-