ترغب بنشر مسار تعليمي؟ اضغط هنا

The Orbital Histories of Magellanic Satellites Using Gaia DR2 Proper Motions

82   0   0.0 ( 0 )
 نشر من قبل Ekta Patel
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With the release of Gaia DR2, it is now possible to measure the proper motions (PMs) of the lowest mass, ultra-faint satellite galaxies in the Milky Ways (MW) halo for the first time. Many of these faint satellites are posited to have been accreted as satellites of the Magellanic Clouds (MCs). Using their 6-dimensional phase space information, we calculate the orbital histories of 13 ultra-faint satellites and five classical dwarf spheroidals in a combined MW+LMC+SMC potential to determine which galaxies are dynamically associated with the MCs. These 18 galaxies are separated into four classes: i.) long-term Magellanic satellites that have been bound to the MCs for at least the last two consecutive orbits around the MCs (Carina 2, Carina 3, Horologium 1, Hydrus 1); ii.) Magellanic satellites that were recently captured by the MCs $<$ 1 Gyr ago (Reticulum 2, Phoenix 2); iii.) MW satellites that have interacted with the MCs (Sculptor 1, Tucana 3, Segue 1); and iv.) MW satellites (Aquarius 2, Canes Venatici 2, Crater 2, Draco 1, Draco 2, Hydra 2, Carina, Fornax, Ursa Minor). Results are reported for a range of MW and LMC masses. Contrary to previous work, we find no dynamical association between Carina, Fornax, and the MCs. Finally, we determine that the addition of the SMCs gravitational potential affects the longevity of satellites as members of the Magellanic system (long-term versus recently captured), but it does not change the total number of Magellanic satellites.

قيم البحث

اقرأ أيضاً

173 - Joshua D. Simon 2018
The second data release from the Gaia mission (DR2) provides a comprehensive and unprecedented picture of the motions of astronomical sources in the plane of the sky, extending from the solar neighborhood to the outer reaches of the Milky Way. I pres ent proper motion measurements based on Gaia DR2 for 17 ultra-faint dwarf galaxies within 100 kpc of the Milky Way. I compile the spectroscopically-confirmed member stars in each dwarf bright enough for Gaia astrometry from the literature, producing member samples ranging from 2 stars in Triangulum II to 68 stars in Bootes I. From the spectroscopic member catalogs I estimate the proper motion of each system. I find good agreement with the proper motions derived by the Gaia collaboration for Bootes I and Leo I. The tangential velocities for 14 of the 17 dwarfs are determined to better than 50 km/s, more than doubling the sample of such measurements for Milky Way satellite galaxies. The orbital pericenters are well-constrained, with a median value of 38 kpc. Only one satellite, Tucana III, is on an orbit passing within 15 kpc of the Galactic center, suggesting that the remaining ultra-faint dwarfs are unlikely to have experienced severe tidal stripping. As a group, the ultra-faint dwarfs are on high-velocity, eccentric, retrograde trajectories, with nearly all of them having space motions exceeding 370 km/s. In a low-mass (M_vir = 0.8 x 10^12 M_sun) Milky Way potential, eight out of the 17 galaxies lack well-defined apocenters and appear likely to be on their first infall, indicating that the Milky Way mass may be larger than previously estimated or that many of the ultra-faint dwarfs are associated with the Magellanic Clouds. The median eccentricity of the ultra-faint dwarf orbits is 0.79, similar to the values seen in numerical simulations, but distinct from the rounder orbits of the more luminous dwarf spheroidals.
Observations of low-mass satellite galaxies in the nearby Universe point towards a strong dichotomy in their star-forming properties relative to systems with similar mass in the field. Specifically, satellite galaxies are preferentially gas poor and no longer forming stars, while their field counterparts are largely gas rich and actively forming stars. Much of the recent work to understand this dichotomy has been statistical in nature, determining not just that environmental processes are most likely responsible for quenching these low-mass systems but also that they must operate very quickly after infall onto the host system, with quenching timescales $lesssim 2~ {rm Gyr}$ at ${M}_{star} lesssim 10^{8}~{rm M}_{odot}$. This work utilizes the newly-available $Gaia$ DR2 proper motion measurements along with the Phat ELVIS suite of high-resolution, cosmological, zoom-in simulations to study low-mass satellite quenching around the Milky Way on an object-by-object basis. We derive constraints on the infall times for $37$ of the known low-mass satellite galaxies of the Milky Way, finding that $gtrsim~70%$ of the `classical satellites of the Milky Way are consistent with the very short quenching timescales inferred from the total population in previous works. The remaining classical Milky Way satellites have quenching timescales noticeably longer, with $tau_{rm quench} sim 6 - 8~{rm Gyr}$, highlighting how detailed orbital modeling is likely necessary to understand the specifics of environmental quenching for individual satellite galaxies. Additionally, we find that the $6$ ultra-faint dwarf galaxies with publicly available $HST$-based star-formation histories are all consistent with having their star formation shut down prior to infall onto the Milky Way -- which, combined with their very early quenching times, strongly favors quenching driven by reionization.
We present mean absolute proper motion measurements for seven ultra-faint dwarf galaxies orbiting the Milky Way, namely Bo{o}tes III, Carina II, Grus II, Reticulum II, Sagittarius II, Segue 2 and Tucana IV. For four of these dwarfs our proper motion estimate is the first ever provided. The adopted astrometric data come from the second data release of the Gaia mission. We determine the mean proper motion for each galaxy starting from an initial guess of likely members, based either on radial velocity measurements or using stars on the Horizontal Branch identified in the Gaia ($G_{rm BP}$-$G_{rm RP}$,$G$) colour-magnitude diagram in the field of view towards the UFD. We then refine their membership iteratively using both astrometry and photometry. We take into account the full covariance matrix among the astrometric parameters when deriving the mean proper motions for these systems. Our procedure provides mean proper motions with typical uncertainties of $sim0.1$ mas/yr, even for galaxies without prior spectroscopic information. In the case of Segue 2 we find that using radial velocity members only leads to biased results, presumably because of the small number of stars with measured radial velocities. Our procedure allows to maximize the number of member stars per galaxy regardless of the existence of prior spectroscopic information, and can therefore be applied on any faint or distant stellar system within reach of Gaia.
New astrometric reductions of the US Naval Observatory CCD Astrograph Catalog (UCAC) all-sky observations were performed from first principles using the TGAS stars in the 8 to 11 magnitude range as reference star catalog. Significant improvements in the astrometric solutions were obtained and the UCAC5 catalog of mean positions at a mean epoch near 2001 was generated. By combining UCAC5 with Gaia DR1 data new proper motions on the Gaia coordinate system for over 107 million stars were obtained with typical accuracies of 1 to 2 mas/yr (R = 11 to 15 mag), and about 5 mas/yr at 16th mag. Proper motions of most TGAS stars are improved over their Gaia data and the precision level of TGAS proper motions is extended to many millions more, fainter stars. External comparisons were made using stellar cluster fields and extragalactic sources. The TGAS data allow us to derive the limiting precision of the UCAC x,y data, which is significantly better than 1/100 pixel.
The 3D velocities of M31 and M33 are important for understanding the evolution and cosmological context of the Local Group. Their most massive stars are detected by Gaia, and we use Data Release 2 (DR2) to determine the galaxy proper motions (PMs). W e select galaxy members based on, e.g., parallax, PM, color-magnitude-diagram location, and local stellar density. The PM rotation of both galaxies is confidently detected, consistent with the known line-of-sight rotation curves: $V_{rm rot} = -206pm86$ km s$^{-1}$ (counter-clockwise) for M31, and $V_{rm rot} = 80pm52$ km s$^{-1}$ (clockwise) for M33. We measure the center-of-mass PM of each galaxy relative to surrounding background quasars in DR2. This yields that $({mu}_{alpha*},{mu}_{delta})$ equals $(65 pm 18 , -57 pm 15)$ $mu$as yr$^{-1}$ for M31, and $(31 pm 19 , -29 pm 16)$ $mu$as yr$^{-1}$ for M33. In addition to the listed random errors, each component has an additional residual systematic error of 16 $mu$as yr$^{-1}$. These results are consistent at 0.8$sigma$ and 1.0$sigma$ with the (2 and 3 times higher-accuracy) measurements already available from Hubble Space Telescope (HST) optical imaging and VLBA water maser observations, respectively. This lends confidence that all these measurements are robust. The new results imply that the M31 orbit towards the Milky Way is somewhat less radial than previously inferred, $V_{rm tan, DR2+HST} = 57^{+35}_{-31}$ km s$^{-1}$, and strengthen arguments that M33 may be on its first infall into M31. The results highlight the future potential of Gaia for PM studies beyond the Milky Way satellite system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا