ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of normal modes in a modified disordered Klein-Gordon lattice: From disorder to order

66   0   0.0 ( 0 )
 نشر من قبل Charalampos Skokos
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a modified version of the disordered Klein-Gordon lattice model, having two parameters for controlling the disorder strength: $D$, which determines the range of the coefficients of the on-site potentials, and $W$, which defines the strength of the nearest-neighbor interactions. We fix $W=4$ and investigate how the properties of the systems normal modes change as we approach its ordered version, i.e. $Drightarrow 0$. We show that the probability density distribution of the normal modes frequencies takes a `U-shaped profile as $D$ decreases. Furthermore, we use two quantities for estimating the modes spatial extent, the so-called localization volume $V$ (which is related to the modes second moment) and the modes participation number $P$. We show that both quantities scale as $propto D^{-2}$ when $D$ approaches zero and we numerically verify a proportionality relation between them as $V/P approx 2.6$.



قيم البحث

اقرأ أيضاً

68 - B. Senyange , Ch. Skokos 2017
We implement several symplectic integrators, which are based on two part splitting, for studying the chaotic behavior of one- and two-dimensional disordered Klein-Gordon lattices with many degrees of freedom and investigate their numerical performanc e. For this purpose, we perform extensive numerical simulations by considering many different initial energy excitations and following the evolution of the created wave packets in the various dynamical regimes exhibited by these models. We compare the efficiency of the considered integrators by checking their ability to correctly reproduce several features of the wave packets propagation, like the characteristics of the created energy distribution and the time evolution of the systems maximum Lyapunov exponent estimator. Among the tested integrators the fourth order $ABA864$ scheme cite{BCFLMM13} showed the best performance as it needed the least CPU time for capturing the correct dynamical behavior of all considered cases when a moderate accuracy in conserving the systems total energy value was required. Among the higher order schemes used to achieve a better accuracy in the energy conservation, the sixth order scheme $s11ABA82_6$ exhibited the best performance.
We consider paradigmatic quenched disordered quantum spin models, viz., the XY spin glass and random-field XY models, and show that quenched averaged quantum correlations can exhibit the order-from-disorder phenomenon for finite-size systems as well as in the thermodynamic limit. Moreover, we find that the order-from-disorder can get more pronounced in the presence of temperature by suitable tuning of the system parameters. The effects are found for entanglement measures as well as for information-theoretic quantum correlation ones, although the former show them more prominently. We also observe that the equivalence between the quenched averages and their self-averaged cousins -- for classical and quantum correlations -- is related to the quantum critical point in the corresponding ordered system.
We study the ladder operator on scalar fields, mapping a solution of the Klein-Gordon equation onto another solution with a different mass, when the operator is at most first order in derivatives. Imposing the commutation relation between the dAlembe rtian, we obtain the general condition for the ladder operator, which contains a non-trivial case which was not discussed in the previous work [V. Cardoso, T. Houri and M. Kimura, Phys.Rev.D 96, 024044 (2017), arXiv:1706.07339]. We also discuss the relation with supersymmetric quantum mechanics.
122 - Bertin Many Manda 2021
We study the chaotic behavior of multidimensional Hamiltonian systems in the presence of nonlinearity and disorder. It is known that any localized initial excitation in a large enough linear disordered system spreads for a finite amount of time and t hen halts forever. This phenomenon is called Anderson localization (AL). What happens to AL when nonlinearity is introduced is an interesting question which has been considered in several studies over the past decades. However, the characteristics and the asymptotic fate of such evolutions still remain an issue of intense debate due to their computational difficulty, especially in systems of more than one spatial dimension. As the spreading of initially localized wave packets is a non-equilibrium thermalization process related to the ergodic and chaotic properties of the system, in our work we investigate the properties of chaos studying the behavior of observables related to the systems tangent dynamics. In particular, we consider the disordered discrete nonlinear Schrodinger (DDNLS) equation of one (1D) and two (2D) spatial dimensions. We present detailed computations of the time evolution of the systems maximum Lyapunov exponent (MLE--$Lambda$), and the related deviation vector distribution (DVD). We find that although the systems MLE decreases in time following a power law $t^{alpha_Lambda}$ with $alpha_Lambda <0$ for both the weak and strong chaos regimes, no crossover to the behavior $Lambda propto t^{-1}$ (which is indicative of regular motion) is observed. In addition, the analysis of the DVDs reveals the existence of random fluctuations of chaotic hotspots with increasing amplitudes inside the excited part of the wave packet, which assist in homogenizing chaos and contribute to the thermalization of more lattice sites.
We study equilibrium properties of catalytically-activated $A + A to oslash$ reactions taking place on a lattice of adsorption sites. The particles undergo continuous exchanges with a reservoir maintained at a constant chemical potential $mu$ and rea ct when they appear at the neighbouring sites, provided that some reactive conditions are fulfilled. We model the latter in two different ways: In the Model I some fraction $p$ of the {em bonds} connecting neighbouring sites possesses special catalytic properties such that any two $A$s appearing on the sites connected by such a bond instantaneously react and desorb. In the Model II some fraction $p$ of the adsorption {em sites} possesses such properties and neighbouring particles react if at least one of them resides on a catalytic site. For the case of textit{annealed} disorder in the distribution of the catalyst, which is tantamount to the situation when the reaction may take place at any point on the lattice but happens with a finite probability $p$, we provide an exact solution for both models for the interior of an infinitely large Cayley tree - the so-called Bethe lattice. We show that both models exhibit a rich critical behaviour: For the annealed Model I it is characterised by a transition into an ordered state and a re-entrant transition into a disordered phase, which both are continuous. For the annealed Model II, which represents a rather exotic model of statistical mechanics in which interactions of any particle with its environment have a peculiar Boolean form, the transition to an ordered state is always continuous, while the re-entrant transition into the disordered phase may be either continuous or discontinuous, depending on the value of $p$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا