ﻻ يوجد ملخص باللغة العربية
Observational results of young star-forming regions suggest that star clusters are completely mass segregated at birth. As a star cluster evolves dynamically, these initial conditions are gradually lost. For star clusters with single stars only and a canonical IMF, it has been suggested that traces of these initial conditions vanish at $tau_{rm v}$ between 3 and 3.5 half-mass relaxation times. By the means of numerical models, here we investigate the role of the primordial binary population on the loss of primordial mass segregation. We found that $tau_{rm v}$ does not seem to depend on the binary star distribution, yielding $3 < tau_{rm v} / t_{rm rh} < 3.5$. We also conclude that the completely mass segregated clusters, even with binaries, are more compatible with the present-day ONC than the non-segregated ones.
Observations of young star-forming regions suggest that star clusters are born completely mass segregated. These initial conditions are, however, gradually lost as the star cluster evolves dynamically. For star clusters with single stars only and a c
A promising mechanism to form intermediate-mass black holes (IMBHs) is the runaway merger in dense star clusters, where main-sequence stars collide and form a very massive star (VMS), which then collapses to a black hole. In this paper we study the e
Several dynamical scenarios have been proposed that can lead to prompt mass segregation on the crossing time scale of a young cluster. They generally rely on cool and/or clumpy initial conditions, and are most relevant to small systems. As a counterp
Investigations of mass segregation are of vital interest for the understanding of the formation and dynamical evolution of stellar systems on a wide range of spatial scales. Our method is based on the minimum spanning tree (MST) that serves as a geom
We present a model to explain the mass segregation and shallow mass functions observed in the central parts of dense and young starburst stellar clusters. The model assumes that the initial pre-stellar cores mass function resulting from the turbulent