ﻻ يوجد ملخص باللغة العربية
The Hawkes self-excited point process provides an efficient representation of the bursty intermittent dynamics of many physical, biological, geological and economic systems. By expressing the probability for the next event per unit time (called intensity), say of an earthquake, as a sum over all past events of (possibly) long-memory kernels, the Hawkes model is non-Markovian. By mapping the Hawkes model onto stochastic partial differential equations that are Markovian, we develop a field theoretical approach in terms of probability density functionals. Solving the steady-state equations, we predict a power law scaling of the probability density function (PDF) of the intensities close to the critical point $n=1$ of the Hawkes process, with a non-universal exponent, function of the background intensity $ u_0$ of the Hawkes intensity, the average time scale of the memory kernel and the branching ratio $n$. Our theoretical predictions are confirmed by numerical simulations.
A field theoretical framework is developed for the Hawkes self-excited point process with arbitrary memory kernels by embedding the original non-Markovian one-dimensional dynamics onto a Markovian infinite-dimensional one. The corresponding Langevin
The origin(s) of the ubiquity of Zipfs law (an inverse power law form for the probability density function (PDF) with exponent $1+1$) is still a matter of fascination and investigation in many scientific fields from linguistic, social, economic, comp
Both theoretical and applied economics have a great deal to say about many aspects of the firm, but the literature on the extinctions, or demises, of firms is very sparse. We use a publicly available data base covering some 6 million firms in the US
To describe and analyze the dynamics of Self-Organized Criticality (SOC) systems, a four-state continuous-time Markov model is proposed in this paper. Different to computer simulation or numeric experimental approaches commonly employed for explainin
We introduce a persistent random walk model with finite velocity and self-reinforcing directionality, which explains how exponentially distributed runs self-organize into truncated Levy walks observed in active intracellular transport by Chen et. al.