ترغب بنشر مسار تعليمي؟ اضغط هنا

End-To-End Trainable Video Super-Resolution Based on a New Mechanism for Implicit Motion Estimation and Compensation

119   0   0.0 ( 0 )
 نشر من قبل Xiaohong Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Video super-resolution aims at generating a high-resolution video from its low-resolution counterpart. With the rapid rise of deep learning, many recently proposed video super-resolution methods use convolutional neural networks in conjunction with explicit motion compensation to capitalize on statistical dependencies within and across low-resolution frames. Two common issues of such methods are noteworthy. Firstly, the quality of the final reconstructed HR video is often very sensitive to the accuracy of motion estimation. Secondly, the warp grid needed for motion compensation, which is specified by the two flow maps delineating pixel displacements in horizontal and vertical directions, tends to introduce additional errors and jeopardize the temporal consistency across video frames. To address these issues, we propose a novel dynamic local filter network to perform implicit motion estimation and compensation by employing, via locally connected layers, sample-specific and position-specific dynamic local filters that are tailored to the target pixels. We also propose a global refinement network based on ResBlock and autoencoder structures to exploit non-local correlations and enhance the spatial consistency of super-resolved frames. The experimental results demonstrate that the proposed method outperforms the state-of-the-art, and validate its strength in terms of local transformation handling, temporal consistency as well as edge sharpness.



قيم البحث

اقرأ أيضاً

The classic Monte Carlo path tracing can achieve high quality rendering at the cost of heavy computation. Recent works make use of deep neural networks to accelerate this process, by improving either low-resolution or fewer-sample rendering with supe r-resolution or denoising neural networks in post-processing. However, denoising and super-resolution have only been considered separately in previous work. We show in this work that Monte Carlo path tracing can be further accelerated by joint super-resolution and denoising (SRD) in post-processing. This new type of joint filtering allows only a low-resolution and fewer-sample (thus noisy) image to be rendered by path tracing, which is then fed into a deep neural network to produce a high-resolution and clean image. The main contribution of this work is a new end-to-end network architecture, specifically designed for the SRD task. It contains two cascaded stages with shared components. We discover that denoising and super-resolution require very different receptive fields, a key insight that leads to the introduction of deformable convolution into the network design. Extensive experiments show that the proposed method outperforms previous methods and their variants adopted for the SRD task.
Estimating eye-gaze from images alone is a challenging task, in large parts due to un-observable person-specific factors. Achieving high accuracy typically requires labeled data from test users which may not be attainable in real applications. We obs erve that there exists a strong relationship between what users are looking at and the appearance of the users eyes. In response to this understanding, we propose a novel dataset and accompanying method which aims to explicitly learn these semantic and temporal relationships. Our video dataset consists of time-synchronized screen recordings, user-facing camera views, and eye gaze data, which allows for new benchmarks in temporal gaze tracking as well as label-free refinement of gaze. Importantly, we demonstrate that the fusion of information from visual stimuli as well as eye images can lead towards achieving performance similar to literature-reported figures acquired through supervised personalization. Our final method yields significant performance improvements on our proposed EVE dataset, with up to a 28 percent improvement in Point-of-Gaze estimates (resulting in 2.49 degrees in angular error), paving the path towards high-accuracy screen-based eye tracking purely from webcam sensors. The dataset and reference source code are available at https://ait.ethz.ch/projects/2020/EVE
Event cameras, which are asynchronous bio-inspired vision sensors, have shown great potential in computer vision and artificial intelligence. However, the application of event cameras to object-level motion estimation or tracking is still in its infa ncy. The main idea behind this work is to propose a novel deep neural network to learn and regress a parametric object-level motion/transform model for event-based object tracking. To achieve this goal, we propose a synchronous Time-Surface with Linear Time Decay (TSLTD) representation, which effectively encodes the spatio-temporal information of asynchronous retinal events into TSLTD frames with clear motion patterns. We feed the sequence of TSLTD frames to a novel Retinal Motion Regression Network (RMRNet) to perform an end-to-end 5-DoF object motion regression. Our method is compared with state-of-the-art object tracking methods, that are based on conventional cameras or event cameras. The experimental results show the superiority of our method in handling various challenging environments such as fast motion and low illumination conditions.
Image-based sequence recognition has been a long-standing research topic in computer vision. In this paper, we investigate the problem of scene text recognition, which is among the most important and challenging tasks in image-based sequence recognit ion. A novel neural network architecture, which integrates feature extraction, sequence modeling and transcription into a unified framework, is proposed. Compared with previous systems for scene text recognition, the proposed architecture possesses four distinctive properties: (1) It is end-to-end trainable, in contrast to most of the existing algorithms whose components are separately trained and tuned. (2) It naturally handles sequences in arbitrary lengths, involving no character segmentation or horizontal scale normalization. (3) It is not confined to any predefined lexicon and achieves remarkable performances in both lexicon-free and lexicon-based scene text recognition tasks. (4) It generates an effective yet much smaller model, which is more practical for real-world application scenarios. The experiments on standard benchmarks, including the IIIT-5K, Street View Text and ICDAR datasets, demonstrate the superiority of the proposed algorithm over the prior arts. Moreover, the proposed algorithm performs well in the task of image-based music score recognition, which evidently verifies the generality of it.
We present a new video understanding pentathlon challenge, an open competition held in conjunction with the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020. The objective of the challenge was to explore and evaluate new methods for text-to-video retrieval-the task of searching for content within a corpus of videos using natural language queries. This report summarizes the results of the first edition of the challenge together with the findings of the participants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا