ترغب بنشر مسار تعليمي؟ اضغط هنا

All-optical reversible controls of integrated photonics by self-assembled azobenzene

67   0   0.0 ( 0 )
 نشر من قبل Andrea Armani
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The next frontier in photonics will rely on the synergistic combination of disparate material systems. One unique organic molecule is azobenzene. This molecule can reversibly change conformations when optically excited in the blue (trans-to-cis) or mid-IR (cis-to-trans). Here, we demonstrate SiO2 optical resonators modified with a monolayer of azobenzene-containing 4-(4-diethylaminophenylazo)pyridine (Aazo) with quality factors over 106. Using a pair of lasers, the molecule is reversibly flipped between molecular conformations, inducing resonant wavelength shifts, and multiple switching cycles are demonstrated. The magnitude of the shift scales with the relative surface density of Aazo. The experimental data agrees with theoretical modeling.

قيم البحث

اقرأ أيضاً

Gallium nitride (GaN) as a wide-band gap material has been widely used in solid-state lighting. Thanks to its high nonlinearity and high refractive index contrast, GaN-on-insulator (GaNOI) is also a promising platform for nonlinear optical applicatio ns. Despite its intriguing optical proprieties, nonlinear applications of GaN have rarely been studied due to the relatively high optical loss of GaN waveguides (2 dB/cm). In this letter, we report GaNOI microresonator with intrinsic quality factor over 2 million, corresponding to an optical loss of 0.26 dB/cm. Parametric oscillation threshold power as low as 8.8 mW is demonstrated, and the experimentally extracted nonlinear index of GaN at telecom wavelengths is estimated to be n2 = 1.2*10 -18 m2W-1, which is comparable with silicon. Single soliton generation in GaN is implemented by an auxiliary laser pumping scheme, so as to mitigate the high thermorefractive effect in GaN. The large intrinsic nonlinear refractive index, together with its broadband transparency window and high refractive index contrast, make GaNOI a most balanced platform for chip-scale nonlinear applications.
Integrated photonics plays a central role in modern science and technology, enabling experiments from nonlinear science to quantum information, ultraprecise measurements and sensing, and advanced applications like data communication and signal proces sing. Optical materials with favorable properties are essential for nanofabrication of integrated-photonics devices. Here we describe a material for integrated nonlinear photonics, tantalum pentoxide (Ta$_2$O$_5$, hereafter tantala), which offers low intrinsic material stress, low optical loss, and efficient access to Kerr-nonlinear processes. We utilize >800-nm thick tantala films deposited via ion-beam sputtering on oxidized silicon wafers. The tantala films contain a low residual tensile stress of 38 MPa, and they offer a Kerr index $n_2$=6.2(23)$times10^{-19}$ m$^2$/W, which is approximately a factor of three higher than silicon nitride. We fabricate integrated nonlinear resonators and waveguides without the cracking challenges that are prevalent in stoichiometric silicon nitride. The tantala resonators feature an optical quality factor up to $3.8times10^6$, which enables us to generate ultrabroad-bandwidth Kerr-soliton frequency combs with low threshold power. Moreover, tantala waveguides enable supercontinuum generation across the near-infrared from low-energy, ultrafast seed pulses. Our work introduces a versatile material platform for integrated, low-loss nanophotonics that can be broadly applied and enable heterogeneous integration.
105 - Di Zhu , Linbo Shao , Mengjie Yu 2021
Lithium niobate (LN), an outstanding and versatile material, has influenced our daily life for decades: from enabling high-speed optical communications that form the backbone of the Internet to realizing radio-frequency filtering used in our cell pho nes. This half-century-old material is currently embracing a revolution in thin-film LN integrated photonics. The success of manufacturing wafer-scale, high-quality, thin films of LN on insulator (LNOI), accompanied with breakthroughs in nanofabrication techniques, have made high-performance integrated nanophotonic components possible. With rapid development in the past few years, some of these thin-film LN devices, such as optical modulators and nonlinear wavelength converters, have already outperformed their legacy counterparts realized in bulk LN crystals. Furthermore, the nanophotonic integration enabled ultra-low-loss resonators in LN, which unlocked many novel applications such as optical frequency combs and quantum transducers. In this Review, we cover -- from basic principles to the state of the art -- the diverse aspects of integrated thin-film LN photonics, including the materials, basic passive components, and various active devices based on electro-optics, all-optical nonlinearities, and acousto-optics. We also identify challenges that this platform is currently facing and point out future opportunities. The field of integrated LNOI photonics is advancing rapidly and poised to make critical impacts on a broad range of applications in communication, signal processing, and quantum information.
Phase change materials (PCMs) have long been used as a storage medium in rewritable compact disk and later in random access memory. In recent years, the integration of PCMs with nanophotonic structures has introduced a new paradigm for non-volatile r econfigurable optics. However, the high loss of the archetypal PCM Ge2Sb2Te5 in both visible and telecommunication wavelengths has fundamentally limited its applications. Sb2S3 has recently emerged as a wide-bandgap PCM with transparency windows ranging from 610nm to near-IR. In this paper, the strong optical phase modulation and low optical loss of Sb2S3 are experimentally demonstrated for the first time in integrated photonic platforms at both 750nm and 1550nm. As opposed to silicon, the thermo-optic coefficient of Sb2S3 is shown to be negative, making the Sb2S3-Si hybrid platform less sensitive to thermal fluctuation. Finally, a Sb2S3 integrated non-volatile microring switch is demonstrated which can be tuned electrically between a high and low transmission state with a contrast over 30dB. Our work experimentally verified the prominent phase modification and low loss of Sb2S3 in wavelength ranges relevant for both solid-state quantum emitter and telecommunication, enabling potential applications such as optical field programmable gate array, post-fabrication trimming, and large-scale integrated quantum photonic network.
As a new group of advanced 2D layered materials, bismuth oxyhalides, i.e., BiOX (X = Cl, Br, I), have recently become of great interest. In this work, we characterize the third-order optical nonlinearities of BiOBr, an important member of the BiOX fa mily. The nonlinear absorption and Kerr nonlinearity of BiOBr nanoflakes at both 800 nm and 1550 nm are characterized via the Z-Scan technique. Experimental results show that BiOBr nanoflakes exhibit a large nonlinear absorption coefficient = b{eta} = 10-7 m/W as well as a large Kerr coefficient n2 = 10-14 m2/W. We also note that the n2 of BiOBr reverses sign from negative to positive as the wavelength is changed from 800 nm to 1550 nm. We further characterize the thickness-dependent nonlinear optical properties of BiOBr nanoflakes, finding that the magnitudes of b{eta} and n2 increase with decreasing thickness of the BiOBr nanoflakes. Finally, we integrate BiOBr nanoflakes into silicon integrated waveguides and measure their insertion loss, with the extracted waveguide propagation loss showing good agreement with mode simulations based on ellipsometry measurements. These results confirm the strong potential of BiOBr as a promising nonlinear optical material for high-performance hybrid integrated photonic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا