ﻻ يوجد ملخص باللغة العربية
The characteristic features of the renormalization of the electrons in the bilayer cuprate superconductors are investigated within the kinetic-energy driven superconductivity. It is shown that the quasiparticle excitation spectrum is split into its bonding and antibonding components due to the presence of the bilayer coupling, with each component that is independent. However, in the underdoped and optimally doped regimes, although the bonding and antibonding electron Fermi surface (EFS) contours deriving from the bonding and antibonding layers are truncated to form the bonding and antibonding Fermi arcs, almost all spectral weights in the bonding and antibonding Fermi arcs are reduced to the tips of the bonding and antibonding Fermi arcs, which in this case coincide with the bonding and antibonding hot spots. These hot spots connected by the scattering wave vectors ${bf q}_{i} $ construct an octet scattering model, and then the enhancement of the quasiparticle scattering processes with the scattering wave vectors ${bf q}_{i}$ is confirmed via the result of the autocorrelation of the ARPES spectral intensities. Moreover, the peak-dip-hump (PDH) structure developed in each component of the quasiparticle excitation spectrum along the corresponding EFS is directly related with the peak structure in the quasiparticle scattering rate except for at around the hot spots, where the PDH structure is caused mainly by the bilayer coupling. Although the kink in the quasiparticle dispersion is present all around EFS, when the momentum moves away from the node to the antinode, the kink energy smoothly decreases, while the dispersion kink becomes more pronounced, and in particular, near the cut close to the antinode, develops into a break separating of the fasting dispersing high-energy part of the quasiparticle excitation spectrum from the slower dispersing low-energy part.
The recent experiments revealed a remarkable possibility for the absence of the disparity between the phase diagrams of the electron- and hole-doped cuprate superconductors, while such an aspect should be also reflected in the dressing of the electro
The interplay between the superconducting gap and normal-state pseudogap in the bilayer cuprate superconductors is studied based on the kinetic energy driven superconducting mechanism. It is shown that the charge carrier interaction directly from the
We propose and analyze a scheme for parametrically cooling bilayer cuprates based on the selective driving of a $c$-axis vibrational mode. The scheme exploits the vibration as a transducer making the Josephson plasma frequencies time-dependent. We sh
We review some previous studies concerning the intra-bilayer Josephson plasmons and present new ellipsometric data of the c-axis infrared response of almost optimally doped Bi_{2}Sr_{2}CaCu_{2}O_{8}. The c-axis conductivity of this compound exhibits
Geometrical Berry phase is recognized as having profound implications for the properties of electronic systems. Over the last decade, Berry phase has been essential to our understanding of new materials, including graphene and topological insulators.