ﻻ يوجد ملخص باللغة العربية
We present a perturbative QCD based model for vacuum and in-medium hadronization. The effects of induced energy loss and nuclear absorption have been included. The main objective is the determination of the relative contribution of these mechanisms to the multiplicity ratio observable, measured in semi-inclusive deep-inelastic scattering off deuterium and nuclear targets. This is directly related to the determination of the production length, $Lp$, necessary for a quark to turn into a prehadron. We compare our results with HERMES data for multiplicity ratio and $p_t$-broadening, and show that the description of the whole data set, keeping the model parameters fixed, puts strong constrains on $Lp$. Contrary to induced-energy-loss based models, we find an important contribution from nuclear absorption at HERMES energies. Finally, we discuss some consequences of our study for the LHC physics, and we present the model predictions for the future EIC experiment.
We study, within the statistical hadronization model, the influence of narrow strangeness carrying baryon resonances (pentaquarks) on the understanding of particle production in relativistic heavy ion collisions. There is a great variation of expecte
The in-medium modifications of hadron properties such as masses and decay widths have been a major focus of the scientific work of Gerry Brown and the insights gained by him and his collaborators made them major drivers of this field for several deca
A parton produced with a high transverse momentum in a hard collision is regenerating its color field, intensively radiating gluons and losing energy. This process cannot last long, if it ends up with production of a leading hadron carrying the main
The GENIE neutrino Monte Carlo describes neutrino-induced hadronization with an effective model, known as AGKY, which is interfaced with PYTHIA at high invariant mass. Only the low-mass AGKY model parameters were extracted from hadronic shower data f
Colliding high energy hadrons either produce new particles or scatter elastically with their quantum numbers conserved and no other particles produced. We consider the latter case here. Although inelastic processes dominate at high energies, elastic