ترغب بنشر مسار تعليمي؟ اضغط هنا

Room temperature skyrmions at zero field in exchange-biased ultrathin films

155   0   0.0 ( 0 )
 نشر من قبل Vincent Jacques
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that magnetic skyrmions with a mean diameter around 60 nm can be stabilized at room temperature and zero external magnetic field in an exchange-biased Pt/Co/NiFe/IrMn multilayer stack. This is achieved through an advanced optimization of the multilayer stack composition in order to balance the different magnetic energies controlling the skyrmion size and stability. Magnetic imaging is performed both with magnetic force microscopy and scanning Nitrogen-Vacancy magnetometry, the latter providing unambiguous measurements at zero external magnetic field. In such samples, we show that exchange bias provides an immunity of the skyrmion spin texture to moderate external magnetic field, in the tens of mT range, which is an important feature for applications as memory devices. These results establish exchange-biased multilayer stacks as a promising platform towards the effective realization of memory and logic devices based on magnetic skyrmions.



قيم البحث

اقرأ أيضاً

Magnetic skyrmions are topological spin textures holding great potential as nanoscale information carriers. Recently, skyrmions have been predicted in antiferromagnets, with key advantages in terms of stability, size and dynamical properties over the ir ferromagnetic analogs. However, their experimental demonstration is lacking. Here we show that skyrmions can be stabilized at zero field and room temperature at the interface of sputtered IrMn thin films exchange-coupled to a ferromagnetic layer. This was realised by replicating the skyrmionic spin texture of the ferromagnet in the antiferromagnet, via annealing above the blocking temperature of the ferromagnet/antiferromagnet bilayer. Using the high-spatial-resolution magnetic microscopy technique XMCD-PEEM, we observe the skyrmions within the IrMn interfacial layer from the XMCD signal of the uncompensated Mn spins at the interface. This result opens up a path for logic and memory devices based on skyrmion manipulation in antiferromagnets.
Magnetic skyrmions are topologically-protected spin textures that exhibit fascinating physical behaviors and large potential in highly energy efficient spintronic device applications. The main obstacles so far are that skyrmions have been observed in only a few exotic materials and at low temperatures, and manipulation of individual skyrmions has not yet been achieved. Here, we report the observation of stable magnetic skyrmions at room temperature in ultrathin transition metal ferromagnets with magnetic transmission soft x-ray microscopy. We demonstrate the ability to generate stable skyrmion lattices and drive trains of individual skyrmions by short current pulses along a magnetic racetrack. Our findings provide experimental evidence of recent predictions and open the door to room-temperature skyrmion spintronics in robust thin-film heterostructures.
Facing the ever-growing demand for data storage will most probably require a new paradigm. Magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-bas ed multilayered thin films where the cobalt layer is sandwiched between two heavy metals providing additive interfacial Dzyaloshinskii-Moriya interactions, which reach about 2 mJ/m2 in the case of the Ir/Co/Pt multilayers. Using a magnetization-sensitive scanning x-ray transmission microscopy technique, we imaged magnetic bubble-like domains in these multilayers. The study of their behavir in magnetic field allows us to conclude that they are actually magnetic skyrmions stabilized by the Dzyaloshinsskii-Moriya interaction. This discoevry of stable skyrmions at room temperature in a technologically relevant material opens the way for device applications in a near future.
We present a combined analytical and numerical micromagnetic study of the equilibrium energy, size and shape of anti-skyrmionic magnetic configurations. Anti-skyrmions can be stabilized when the Dzyaloshinskii-Moriya interaction has opposite signs al ong two orthogonal in-plane directions, breaking the magnetic circular symmetry. We compare the equilibrium energy, size and shape of anti-skyrmions and skyrmions that are stabilized respectively in environments with anisotropic and isotropic Dzyaloshinskii-Moriya interaction, but with the same strength of the magnetic interactions.When the dipolar interactions are neglected the skyrmion and the anti-skyrmion have the same energy, shape and size in their respective environment. However, when dipolar interactions are considered, the energy of the anti-skyrmion is strongly reduced and its equilibrium size increased with respect to the skyrmion. While the skyrmion configuration shows homochiral N{e}el magnetization rotations, anti-skyrmions show partly N{e}el and partly Bloch rotations. The latter do not produce magnetic charges and thus cost less dipolar energy. Both magnetic configurations are stable when the magnetic energies almost cancel each other, which means that a small variation of one parameter can drastically change their configuration, size and energy.
In the quest for post-CMOS technologies, ferromagnetic skyrmions and their anti-particles have shown great promise as topologically protected solitonic information carriers in memory-in-logic or neuromorphic devices. However, the presence of dipolar fields in ferromagnets, restricting the formation of ultra-small topological textures, and the deleterious skyrmion Hall effect when driven by spin torques have thus far inhibited their practical implementations. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling have recently come into intense focus, but their experimental realizations in natural antiferromagnetic systems are yet to emerge. Here, we demonstrate a family of topological antiferromagnetic spin-textures in $alpha$-Fe$_2$O$_3$ - an earth-abundant oxide insulator - capped with a Pt over-layer. By exploiting a first-order analogue of the Kibble-Zurek mechanism, we stabilize exotic merons-antimerons (half-skyrmions), and bimerons, which can be erased by magnetic fields and re-generated by temperature cycling. These structures have characteristic sizes of the order ~100 nm that can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways to further scaling. Driven by current-based spin torques from the heavy-metal over-layer, some of these AFM textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا