ﻻ يوجد ملخص باللغة العربية
We reconsider the contribution due to $pi a_1$-mixing to the anomalous $gammatopi^+pi^0pi^-$ amplitude from the standpoint of the low-energy theorem $F^{pi}=e f_pi^2 F^{3pi}$, which relates the electromagnetic form factor $F_{pi^0togammagamma}=F^pi$ with the form factor $F_{gammatopi^+pi^0pi^-}=F^{3pi}$ both taken at vanishing momenta of mesons. Our approach is based on a recently proposed covariant diagonalization of $pi a_1$-mixing within a standard effective QCD-inspired meson Lagrangian obtained in the framework of the Nambu-Jona-Lasinio model. We show that the two surface terms appearing in the calculation of the anomalous triangle quark diagrams or AVV- and AAA-type amplitudes are uniquely fixed by this theorem. As a result, both form factors $F^pi$ and $F^{3pi}$ are not affected by the $pi a_1$-mixing, but the concept of vector meson dominance (VMD) fails for $gammatopi^+pi^0pi^-$.
Using a recently proposed gauge covariant diagonalization of $pi a_1$-mixing we show that the low energy theorem $F^{pi}=e f_pi^2 F^{3pi}$ of current algebra, relating the anomalous form factor $F_{gamma to pi^+pi^0pi^-} = F^{3pi}$ and the anomalous
It is found that in presence of electroweak interactions the gauge covariant diagonalization of the axial-vector -- pseudoscalar mixing in the effective meson Lagrangian leads to a deviation from the vector meson and the axial-vector meson dominance
A reliable determination of the isospin breaking double quark mass ratio from precise experimental data on $etato 3pi$ decays should be based on the chiral expansion of the amplitude supplemented with a Khuri-Treiman type dispersive treatment of the
We evaluate the $a_1(1260) to pi sigma (f_0(500))$ decay width from the perspective that the $a_1(1260)$ resonance is dynamically generated from the pseudoscalar-vector interaction and the $sigma$ arises from the pseudoscalar-pseudoscalar interaction
We show that the a_1-rho-pi Lagrangian is a decisive element for obtaining a good phenomenological description of the three-pion decays of the tau lepton. We choose it in a two-component form with a flexible mixing parameter sin(theta). In addition t