ﻻ يوجد ملخص باللغة العربية
We investigate the behavior of the Generalized Alignment Index of order $k$ (GALI$_k$) for regular orbits of multidimensional Hamiltonian systems. The GALI$_k$ is an efficient chaos indicator, which asymptotically attains positive values for regular motion when $2leq k leq N$, with $N$ being the dimension of the torus on which the motion occurs. By considering several regular orbits in the neighborhood of two typical simple, stable periodic orbits of the Fermi-Pasta-Ulam-Tsingou (FPUT) $beta$ model for various values of the systems degrees of freedom, we show that the asymptotic GALI$_k$ values decrease when the indexs order $k$ increases and when the orbits energy approaches the periodic orbits destabilization energy where the stability island vanishes, while they increase when the considered regular orbit moves further away from the periodic one for a fixed energy. In addition, performing extensive numerical simulations we show that the indexs behavior does not depend on the choice of the initial deviation vectors needed for its evaluation.
We study the chaotic behavior of multidimensional Hamiltonian systems in the presence of nonlinearity and disorder. It is known that any localized initial excitation in a large enough linear disordered system spreads for a finite amount of time and t
We report on transcritical bifurcations of periodic orbits in non-integrable two-dimensional Hamiltonian systems. We discuss their existence criteria and some of their properties using a recent mathematical description of transcritical bifurcations i
The recently introduced GALI method is used for rapidly detecting chaos, determining the dimensionality of regular motion and predicting slow diffusion in multi--dimensional Hamiltonian systems. We propose an efficient computation of the GALI$_k$ ind
A recent model of Ariel et al. [1] for explaining the observation of Levy walks in swarming bacteria suggests that self-propelled, elongated particles in a periodic array of regular vortices perform a super-diffusion that is consistent with Levy walk
We use the Smaller Alignment Index (SALI) to distinguish rapidly and with certainty between ordered and chaotic motion in Hamiltonian flows. This distinction is based on the different behavior of the SALI for the two cases: the index fluctuates aroun