ﻻ يوجد ملخص باللغة العربية
The wavelength and rate of the $5p-5s$ transition of W XIV - W XVI ions have been calculated by the relativistic configuration interaction (RCI) method with the implementation of Flexible Atomic code (FAC). A reasonable collisional-radiative model (CRM) has been constructed to simulate the $5p - 5s$ transition spectrum of W XIV - W XVI ions which had been observed in electron beam ion trap (EBIT) device. The results are in reasonable agreement with the available experimental and theoretical data, and might be applied to identify the controversial spectra. The confusion on the assignment of the ionization stage are solved in the present work.
A detailed-level collisional-radiative model for the M1 transition spectrum of the Ca-like W$^{54+}$ ion as observed in an electron beam ion trap (EBIT) was constructed based on atomic data calculated by the relativistic configuration interaction met
Plasma diagnostics in magnetic confinement fusion plasmas by using visible spectrum strongly depends on the knowledge of fundamental atomic properties. A detailed collisional-radiative model of W$^{26+}$ ions has been constructed by considering radia
Absolute cross sections for electron-impact single ionisation (EISI) of multiply charged tungsten ions (W$^{q+}$) with charge states in the range $ 11 leq q leq 18$ in the electron-ion collision energy ranges from below the respective ionisation thre
A detailed level collisional-radiative model of the E1 transition spectrum of Ca-like W$^{54+}$ ion has been constructed. All the necessary atomic data has been calculated by relativistic configuration interaction (RCI) method with the implementation
Recently, we have demonstrated (Jin et al. 2020, J. Phys. B: At. Mol. Opt. Phys. 53, 075201) that a hybrid subconfiguration-average and level-to-level distorted wave treatment of electron-impact single ionisation (EISI) of W$^{14+}$ ions represents a