ترغب بنشر مسار تعليمي؟ اضغط هنا

InSAR Phase Denoising: A Review of Current Technologies and Future Directions

125   0   0.0 ( 0 )
 نشر من قبل Gang Xu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Nowadays, interferometric synthetic aperture radar (InSAR) has been a powerful tool in remote sensing by enhancing the information acquisition. During the InSAR processing, phase denoising of interferogram is a mandatory step for topography mapping and deformation monitoring. Over the last three decades, a large number of effective algorithms have been developed to do efforts on this topic. In this paper, we give a comprehensive overview of InSAR phase denoising methods, classifying the established and emerging algorithms into four main categories. The first two parts refer to the categories of traditional local filters and transformed-domain filters, respectively. The third part focuses on the category of nonlocal (NL) filters, considering their outstanding performances. Latter, some advanced methods based on new concept of signal processing are also introduced to show their potentials in this field. Moreover, several popular phase denoising methods are illustrated and compared by performing the numerical experiments using both simulated and measured data. The purpose of this paper is intended to provide necessary guideline and inspiration to related researchers by promoting the architecture development of InSAR signal processing.

قيم البحث

اقرأ أيضاً

Quantum computing is an emerging paradigm with the potential to offer significant computational advantage over conventional classical computing by exploiting quantum-mechanical principles such as entanglement and superposition. It is anticipated that this computational advantage of quantum computing will help to solve many complex and computationally intractable problems in several areas such as drug design, data science, clean energy, finance, industrial chemical development, secure communications, and quantum chemistry. In recent years, tremendous progress in both quantum hardware development and quantum software/algorithm have brought quantum computing much closer to reality. Indeed, the demonstration of quantum supremacy marks a significant milestone in the Noisy Intermediate Scale Quantum (NISQ) era - the next logical step being the quantum advantage whereby quantum computers solve a real-world problem much more efficiently than classical computing. As the quantum devices are expected to steadily scale up in the next few years, quantum decoherence and qubit interconnectivity are two of the major challenges to achieve quantum advantage in the NISQ era. Quantum computing is a highly topical and fast-moving field of research with significant ongoing progress in all facets. This article presents a comprehensive review of quantum computing literature, and taxonomy of quantum computing. Further, the proposed taxonomy is used to map various related studies to identify the research gaps. A detailed overview of quantum software tools and technologies, post-quantum cryptography and quantum computer hardware development to document the current state-of-the-art in the respective areas. We finish the article by highlighting various open challenges and promising future directions for research.
Solar energy is anticipated to be the most viable source of sustainable green energy. Perovskites have gained significant research attention in recent years as a solar energy harvesting material due to their desirable photovoltaic enabling properties . The potential strategies for a more effective use of these materials can involve multiple energy conversion mechanisms through a single device or employing materials where a solar or thermal input provides multiple electrical outputs to enhance the overall energy harvesting capability. In this context, the present review focuses on perovskites, including both organic halide perovskites and inorganic oxide perovskites, due to their proven properties as photovoltaic materials and their intriguing potential for additional functionality, such as ferroelectricity. Ferroelectrics are a special class of perovskites that have been studied in detail for photoferroic, pyroelectric and thermoelectric effects and energy storage, which we briefly review here. Furthermore, the possibilities of simultaneously tuning these mechanisms in perovskite materials for multiple energy conversion mechanisms and storage for ultra-high density capacitor and battery applications is also examined in order to attain a better understanding and to present novel opportunities. An understanding of all these mechanisms and device prospects will inspire and inform the selection of appropriate materials and potential novel designs so that the available solar and thermal resource could be utilized in a more effective manner. This review will not only help in selecting an appropriate material from the existing pool of perovskite materials, but will also provide an outlook and assistance to researchers in developing new material systems.
Segmentation of cardiac fibrosis and scar are essential for clinical diagnosis and can provide invaluable guidance for the treatment of cardiac diseases. Late Gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) has been successful fo r its efficacy in guiding the clinical diagnosis and treatment reliably. For LGE CMR, many methods have demonstrated success in accurately segmenting scarring regions. Co-registration with other non-contrast-agent (non-CA) modalities, balanced steady-state free precession (bSSFP) and cine magnetic resonance imaging (MRI) for example, can further enhance the efficacy of automated segmentation of cardiac anatomies. Many conventional methods have been proposed to provide automated or semi-automated segmentation of scars. With the development of deep learning in recent years, we can also see more advanced methods that are more efficient in providing more accurate segmentations. This paper conducts a state-of-the-art review of conventional and current state-of-the-art approaches utilising different modalities for accurate cardiac fibrosis and scar segmentation.
With populations ageing, the number of people with dementia worldwide is expected to triple to 152 million by 2050. Seventy percent of cases are due to Alzheimers disease (AD) pathology and there is a 10-20 year pre-clinical period before significant cognitive decline occurs. We urgently need, cost effective, objective methods to detect AD, and other dementias, at an early stage. Risk factor modification could prevent 40% of cases and drug trials would have greater chances of success if participants are recruited at an earlier stage. Currently, detection of dementia is largely by pen and paper cognitive tests but these are time consuming and insensitive to pre-clinical phases. Specialist brain scans and body fluid biomarkers can detect the earliest stages of dementia but are too invasive or expensive for widespread use. With the advancement of technology, Artificial Intelligence (AI) shows promising results in assisting with detection of early-stage dementia. Existing AI-aided methods and potential future research directions are reviewed and discussed.
122 - Zihui Wu , Yu Sun , Jiaming Liu 2019
Regularization by denoising (RED) is a powerful framework for solving imaging inverse problems. Most RED algorithms are iterative batch procedures, which limits their applicability to very large datasets. In this paper, we address this limitation by introducing a novel online RED (On-RED) algorithm, which processes a small subset of the data at a time. We establish the theoretical convergence of On-RED in convex settings and empirically discuss its effectiveness in non-convex ones by illustrating its applicability to phase retrieval. Our results suggest that On-RED is an effective alternative to the traditional RED algorithms when dealing with large datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا