ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental study of the 2n-transfer reaction $^{138}$Ba($^{18}$O,$^{16}$O)$^{140}$Ba in the projectile energy range 61-67 MeV

56   0   0.0 ( 0 )
 نشر من قبل Ahmed Khaliel
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف A. Khaliel




اسأل ChatGPT حول البحث

Two-neutron transfer reactions serve as an important tool for nuclear structure studies in the neutron rich part of the nuclear chart. In this article, we report on the first experimental attempt to populate the excited states of $^{140}$Ba employing the 2n-neutron transfer reaction $^{138}$Ba($^{18}$O,$^{16}$O)$^{140}$Ba. $^{140}$Ba is highly important, as it is placed on the onset of octupole correlations and the lifetimes of its excited states are completely unknown, with the sole exception of the first 2$^+$ state. The experiment was carried out at the Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH) in Magurele, Romania. Lower limits on the lifetimes of ground state band up to the 8$^+$ state are reported. Furthermore, relative cross sections regarding the 2n-transfer reaction with respect to the fusion and the total inelastic reaction channels have been deduced. Further investigation directions of the nuclear structure of $^{140}$Ba are also discussed.



قيم البحث

اقرأ أيضاً

Background: Recently, a systematic exploration of two-neutron transfer induced by the ($^{18}$O, $^{16}$O) reaction on different targets has been performed. The high resolution data have been collected at the MAGNEX magnetic spectrometer of the INFN- LNS laboratory in Catania and analyzed with the coupled reaction channel (CRC) approach. The simultaneous and sequential transfers of the two neutrons have been considered under the same theoretical framework without the need of adjustable factors in the calculations. Purpose: A detailed analysis of the one-neutron transfer cross sections is important to study the sequential two-neutron transfer. Here, we examine the ($^{18}$O, $^{17}$O) reaction on $^{16}$O, $^{28}$Si and $^{64}$Ni targets. These even-even nuclei allow for investigation of one-neutron transfer in distinct nuclear shell spaces. Method: The MAGNEX spectrometer was used to measure mass spectra of ejectiles and extract differential cross sections of one-neutron transfer to low-lying states. We adopted the same CRC formalism used in the sequential two-neutron transfer, including relevant channels and using spectroscopic amplitudes obtained from shell model calculations. We also compare with one-step distorted wave Born approximation (DWBA). Results: For the $^{18}$O + $^{16}$O and the $^{18}$O + $^{28}$O systems we used two interactions in the shell model. The experimental angular distributions are reasonably well reproduced by the CRC calculations. In the $^{18}$O + $^{64}$Ni system, we considered only one interaction and the theoretical curve describes the shape and order of magnitude observed in the experimental data. Conclusions: Comparisons between experimental, DWBA and CRC angle-integrated cross sections suggest that excitations before or after the transfer of neutron is relevant in the $^{18}$O + $^{16}$O and $^{18}$O + $^{64}$Ni systems.
Background: The $^{136}$Ba isotope is the daughter nucleus in $^{136}$Xe $betabeta$ decay. It also lies in a shape transitional region of the nuclear chart, making it a suitable candidate to test a variety of nuclear models. Purpose: To obtain spectr oscopic information on states in $^{136}$Ba, which will allow a better understanding of its low-lying structure. These data may prove useful to constrain future $^{136}$Xe $to$ $^{136}$Ba neutrinoless $betabeta$ decay matrix element calculations. Methods: A $^{138}mathrm{Ba}(p,t)$ reaction was used to populate states in $^{136}$Ba up to approximately 4.6 MeV in excitation energy. The tritons were detected using a high-resolution Q3D magnetic spectrograph. A distorted wave Born approximation (DWBA) analysis was performed for the measured triton angular distributions. Results: One hundred and two excited states in $^{136}$Ba were observed, out of which fifty two are reported for the first time. Definite spin-parity assignments are made for twenty six newly observed states, while previously ambiguous assignments for twelve other states are resolved.
The reaction mechanism of deep-inelastic multinucleon transfer processes in the $^{16}$O+$^{27}$Al reaction at an incident $^{16}$O energy ($E_{rm lab}=134$ MeV) substantially above the Coulomb barrier has been studied both experimentally and theoret ically. Elastic-scattering angular distribution, total kinetic energy loss spectra and angular distributions for various transfer channels have been measured. The $Q$-value- and angle-integrated isotope production cross sections have been deduced. To obtain deeper insight into the underlying reaction mechanism, we have carried out a detailed analysis based on the time-dependent Hartree-Fock (TDHF) theory. A recently developed method, TDHF+GEMINI, has been applied to evaluate production cross sections for secondary products. From a comparison between the experimental and theoretical cross sections, we find that the theory qualitatively reproduces the experimental data. Significant effects of secondary light-particle emissions are demonstrated. Possible interplay between fusion-fission, deep-inelastic, multinucleon transfer and particle evaporation processes are discussed.
The elastic scattering angular distribution of the $^{16}$O$+^{60}$Ni system at $260$ MeV was measured in the range of the Rutherford cross section down to $7$ orders of magnitude below. The cross sections of the lowest $2^{+}$ and $3^{-}$ inelastic states of the target were also measured over a several orders of magnitude range. Coupled channel (CC) calculations were performed and are shown to be compatible with the whole set of data only when including the excitation of the projectile and when the deformations of the imaginary part of the nuclear optical potential are taken into account. Similar results were obtained when the procedure is applied to the existing data on $^{16}$O$+^{27}$Al elastic and inelastic scattering at $100$ and $280$ MeV. An analysis in terms of Dynamical Polarization Potentials (DPP) indicate the major role of coupled channel effects in the overlapping surface region of the colliding nuclei.
169 - T. Wakasa , M. Okamoto , M. Takaki 2011
We report measurements of the cross section and a complete set of polarization transfer observables for the ${}^{16}{rm O}(vec{p},vec{n}){}^{16}{rm F}$ reaction at a bombarding energy of $T_p$ = 296 MeV and a reaction angle of $theta_{rm lab}$ = $0^{ circ}$. The data are compared with distorted-wave impulse approximation calculations employing the large configuration-space shell-model (SM) wave functions. The well-known Gamow-Teller and spin-dipole (SD) states at excitation energies of $E_x$ $lesssim$ 8 MeV have been reasonably reproduced by the calculations except for the spin--parity $J^{pi}$ = $2^-$ state at $E_x$ = 5.86 MeV. The SD resonance at $E_x$ $simeq$ 9.5 MeV appears to have more $J^{pi}$ = $2^-$ strength than $J^{pi}$ = $1^-$ strength, consistent with the calculations. The data show significant strength in the spin-longitudinal polarized cross section $ID_L(0^{circ})$ at $E_x$ $simeq$ 15 MeV, which indicates existence of the $J^{pi}$ = $0^-$ SD resonance as predicted in the SM calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا