ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarizing an antiferromagnet by optical engineering of the crystal field

329   0   0.0 ( 0 )
 نشر من قبل Ankit Disa
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strain engineering is widely used to manipulate the electronic and magnetic properties of complex materials. An attractive route to control magnetism with strain is provided by the piezomagnetic effect, whereby the staggered spin structure of an antiferromagnet is decompensated by breaking the crystal field symmetry, which induces a ferrimagnetic polarization. Piezomagnetism is especially attractive because unlike magnetostriction it couples strain and magnetization at linear order, and allows for bi-directional control suitable for memory and spintronics applications. However, its use in functional devices has so far been hindered by the slow speed and large uniaxial strains required. Here, we show that the essential features of piezomagnetism can be reproduced with optical phonons alone, which can be driven by light to large amplitudes without changing the volume and hence beyond the elastic limits of the material. We exploit nonlinear, three-phonon mixing to induce the desired crystal field distortions in the antiferromagnet CoF$_2$. Through this effect, we generate a ferrimagnetic moment of 0.2 $mu_B$ per unit cell, nearly three orders of magnitude larger than achieved with mechanical strain.


قيم البحث

اقرأ أيضاً

267 - T. Haku , M. Soda , M. Sera 2015
Inelastic neutron scattering measurement is performed on a breathing pyrochlore antiferromagnet Ba3Yb2Zn5O11. The observed dispersionless excitations are explained by a crystalline electric field (CEF) Hamiltonian of Kramers ion Yb3+ of which the loc al symmetry exhibits C3v point group symmetry. The magnetic susceptibility previously reported is consistently reproduced by the energy scheme of the CEF excitations. The obtained wave functions of the ground state Kramers doublet exhibit the planer-type anisotropy. The result demonstrates that Ba3Yb2Zn5O11 is an experimental realization of breathing pyrochlore antiferromagnet with a pseudospin S = 1/2 having easy-plane anisotropy.
In this Letter, we report the results of ESR measurements in high magnetic fields up to about 53 T on single crystals of NiGa2S4 to clarify the spin dynamics in more detail. We have found that the dynamics of Z2 vortices affects the temperature depen dence of the ESR absorption linewidth and the frequency dependence of the ESR resonance fields at 1.3 K is well explained by a conventional spin wave theory. These results suggest an occurrence of Z2 vortex-induced topological transition.
We study thermoelectric transport at low temperatures in correlated Kondo insulators, motivated by the recent observation of a high thermoelectric figure of merit(ZT) in $FeSb_2$ at $T sim 10 K$. Even at room temperature, correlations have the potent ial to lead to high ZT, as in $YbAl_3$, one of the most widely used thermoelectric metals. At low temperature correlation effects are especially worthy of study because fixed band structures are unlikely to give rise to the very small energy gaps $E_g sim 5 kT$ necessary for a weakly correlated material to function efficiently at low temperature. We explore the possibility of improving the thermoelectric properties of correlated Kondo insulators through tuning of crystal field and spin-orbit coupling and present a framework to design more efficient low-temperature thermoelectrics based on our results.
Here, we report the magneto-conductivity (up to 14Tesla and down to 5K) analysis of Bi2Te3 single-crystal. A sharp magneto-conductivity (MC) rise (inverted v-type cusp) is observed near H=0 due to the weak antilocalization (WAL) effect, while a linea r curve is observed at higher fields. We account for magneto-conductivity (MC) over the entire range of applied magnetic fields of up to 14Tesla and temperatures from 100K to 5K in a modified HLN modelling (addition of quadratic (BH2) through quantum and classical components involvement. The additional term BH2 reveals a gradual change of a (HLN parameter) from -0.421(6) to -0.216(1) as the temperature increases from 5 to 100K. The phase coherence length Lphi obtained from both conventional and modified modelling decreased with increasing temperature but remains more protracted than the mean free path (L) of electrons. It shows the quantum phase coherence effect dominates at high temperature.
The magnetic properties of two-dimensional VI3 bilayer are the focus of our first-principles analysis, highlighting the role of trigonal crystal-field effects and carried out in comparison with the CrI3 prototypical case, where the effects are absent . In VI3 bilayers, the empty a1g state - consistent with the observed trigonal distortion - is found to play a crucial role in both stabilizing the insulating state and in determining the inter-layer magnetic interaction. Indeed, an analysis based on maximally localized Wannier functions allows to evaluate the interlayer exchange interactions in two different VI3 stackings (labelled AB and AB), to interpret the results in terms of virtual-hopping mechanism, and to highlight the strongest hopping channels underlying the magnetic interlayer coupling. Upon application of electric fields perpendicular to the slab, we find that the magnetic ground-state in the AB stacking can be switched from antiferromagnetic to ferromagnetic, suggesting VI3 bilayer as an appealing candidate for electric-field-driven miniaturized spintronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا