ﻻ يوجد ملخص باللغة العربية
Epitaxial perovskite (110) oriented SrIrO3 (SIO) thin films were grown by pulsed laser deposition on (110) oriented DyScO3 (DSO) substrates with various film thickness t (2 nm < t < 50 nm). All the films were produced with stoichiometric composition, orthorhombic phase, and with high crystallinity. The nearly perfect in-plane lattice matching of DSO with respect to SIO and same symmetry result in a full epitaxial inplane alignment, i.e., the c-axis of DSO and SIO are parallel to each other with only slightly enlarged d110 out-of-plane lattice spacing (+0.38%) due to the small in-plane compressive strain caused by the DSO substrate. Measurements of the magnetoresistance MR were carried out for current flow along the [001] and [1-10] direction of SIO and magnetic field perpendicular to the film plane. MR appears to be distinctly different for both directions. The anisotropy MR001/MR1-10 > 1 increases with decreasing T and is especially pronounced for the thinnest films, which likewise display a hysteretic field dependence below T* ~ 3 K. The coercive field Hc amounts to 2-5 T. Both, T* and Hc are very similar to the magnetic ordering temperature and coercivity of DSO which strongly suggests substrate-induced mechanism as a reason for the anisotropic magnetotransport in the SIO films.
Electron gases at the surfaces of (001), (110), and (111) oriented SrTiO3 (STO) have been created using Ar+-irradiation with fully metallic behavior and low-temperature-mobility as large as 5500 cm2V-1s-1, 1300 cm2V-1s-1 and 8600 cm2V-1s-1 for (001)-
Highly oriented polycrystalline SSMO thin films deposited on single crystal substrates by ultrasonic nebulized spray pyrolysis have been studied. The film on LAO is under compressive strain while LSAT and STO are under tensile strain. The presence of
5d transition-metal-based oxides display emergent phenomena due to the competition between the relevant energy scales of the correlation, bandwidth, and most importantly, the strong spin-orbit coupling (SOC). Starting from the prediction of novel oxi
We report on the evolution of the average and depth-dependent magnetic order in thin film samples of biaxially stressed and electron-doped EuTiO$_3$ for samples across a doping range $<$0.1 to 7.8 $times 10^{20}$ cm$^{-3}$. Under an applied in-plane
Obtaining high-quality thin films of 5d transition metal oxides is essential to explore the exotic semimetallic and topological phases predicted to arise from the combination of strong electron correlations and spin-orbit coupling. Here, we show that