ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding the mesoscopic scaling patterns within cities

154   0   0.0 ( 0 )
 نشر من قبل Lei Dong
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding quantitative relationships between urban elements is crucial for a wide range of applications. The observation at the macroscopic level demonstrates that the aggregated urban quantities (e.g., gross domestic product) scale systematically with population sizes across cities, also known as urban scaling laws. However, at the mesoscopic level, we lack an understanding of whether the simple scaling relationship holds within cities, which is a fundamental question regarding the spatial origin of scaling in urban systems. Here, by analyzing four extensive datasets covering millions of mobile phone users and urban facilities, we investigate the scaling phenomena within cities. We find that the mesoscopic infrastructure volume and socioeconomic activity scale sub- and super-linearly with the active population, respectively. For a same scaling phenomenon, however, the exponents vary in cities of similar population sizes. To explain these empirical observations, we propose a conceptual framework by considering the heterogeneous distributions of population and facilities, and the spatial interactions between them. Analytical and numerical results suggest that, despite the large number of complexities that influence urban activities, the simple interaction rules can effectively explain the observed regularity and heterogeneity in scaling behaviors within cities.



قيم البحث

اقرأ أيضاً

367 - Elsa Arcaute 2013
Cities can be characterised and modelled through different urban measures. Consistency within these observables is crucial in order to advance towards a science of cities. Bettencourt et al have proposed that many of these urban measures can be predi cted through universal scaling laws. We develop a framework to consistently define cities, using commuting to work and population density thresholds, and construct thousands of realisations of systems of cities with different boundaries for England and Wales. These serve as a laboratory for the scaling analysis of a large set of urban indicators. The analysis shows that population size alone does not provide enough information to describe or predict the state of a city as previously proposed, indicating that the expected scaling laws are not corroborated. We found that most urban indicators scale linearly with city size regardless of the definition of the urban boundaries. However, when non-linear correlations are present, the exponent fluctuates considerably.
Despite the long history of modelling human mobility, we continue to lack a highly accurate approach with low data requirements for predicting mobility patterns in cities. Here, we present a population-weighted opportunities model without any adjusta ble parameters to capture the underlying driving force accounting for human mobility patterns at the city scale. We use various mobility data collected from a number of cities with different characteristics to demonstrate the predictive power of our model. We find that insofar as the spatial distribution of population is available, our model offers universal prediction of mobility patterns in good agreement with real observations, including distance distribution, destination travel constraints and flux. In contrast, the models that succeed in modelling mobility patterns in countries are not applicable in cities, which suggests that there is a diversity of human mobility at different spatial scales. Our model has potential applications in many fields relevant to mobility behaviour in cities, without relying on previous mobility measurements.
66 - Jie Chang , Guofu Yang , Shun Liu 2020
The dynamics of citys spatial structures are determined by the coupling of functional components (such as restaurants and shops) and human beings within the city. Yet, there still lacks mechanism models to quantify the spatial distribution of functio nal components. Here, we establish a gradient model to simulate the density curves of multiple types of components based on the equilibria of gravitational and repulsive forces along the urban-rural gradient. The forces from city center to components are determined by both the citys attributes (land rent, population and peoples environmental preferences) and the components attributes (supply capacity, product transportability and environmental impacts). The simulation for the distribution curves of 22 types of components on the urban-rural gradient are a good fit for the real-world data in cities. Based on the 4 typical types of components, the model reveals a bottom-up self-organizing mechanism that is, the patterns in city development are determined by the economic, ecological, and social attributes of both cities and components. Based on the mechanism, we predict the distribution curves of many types of components along with the development of cities. The model provides a general tool for analyzing the distribution of objects on the gradients.
Given that a group of cities follows a scaling law connecting urban population with socio-economic or infrastructural metrics (transversal scaling), should we expect that each city would follow the same behavior over time (longitudinal scaling)? This assumption has important policy implications, although rigorous empirical tests have been so far hindered by the lack of suitable data. Here, we advance the debate by looking into the temporal evolution of the scaling laws for 5507 municipalities in Brazil. We focus on the relationship between population size and two urban variables, GDP and water network length, analyzing the time evolution of the system of cities as well as their individual trajectory. We find that longitudinal (individual) scaling exponents are city-specific, but they are distributed around an average value that approaches to the transversal scaling exponent when the data are decomposed to eliminate external factors, and when we only consider cities with a sufficiently large growth rate. Such results give support to the idea that the longitudinal dynamics is a micro-scaling version of the transversal dynamics of the entire urban system. Finally, we propose a mathematical framework that connects the microscopic level to global behavior, and, in all analyzed cases, we find good agreement between theoretical prediction and empirical evidence.
232 - M.C. Gonzalez , C.A. Hidalgo , 2008
Despite their importance for urban planning, traffic forecasting, and the spread of biological and mobile viruses, our understanding of the basic laws governing human motion remains limited thanks to the lack of tools to monitor the time resolved loc ation of individuals. Here we study the trajectory of 100,000 anonymized mobile phone users whose position is tracked for a six month period. We find that in contrast with the random trajectories predicted by the prevailing Levy flight and random walk models, human trajectories show a high degree of temporal and spatial regularity, each individual being characterized by a time independent characteristic length scale and a significant probability to return to a few highly frequented locations. After correcting for differences in travel distances and the inherent anisotropy of each trajectory, the individual travel patterns collapse into a single spatial probability distribution, indicating that despite the diversity of their travel history, humans follow simple reproducible patterns. This inherent similarity in travel patterns could impact all phenomena driven by human mobility, from epidemic prevention to emergency response, urban planning and agent based modeling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا