ﻻ يوجد ملخص باللغة العربية
We review the capabilities of two projects that have been proposed as the next major European facility, for consideration in the upcoming update of the European Strategy for Particle Physics: CLIC and FCC. We focus on their physics potentials and emphasise the key differences between the linear or circular approaches. We stress the uniqueness of the FCC-ee programme for precision electroweak physics at the $Z$ peak and the $WW$ threshold, as well as its unequalled statistics for Higgs physics and high accuracy for observing possible new phenomena in Higgs and $Z$ decays, whereas CLIC and FCC-ee offer similar capabilities near the $t overline t$ threshold. Whilst CLIC offers the possibility of energy upgrades to 1500 and 3000 GeV, FCC-ee paves the way for FCC-hh. The latter offers unique capabilities for making direct or indirect discoveries in a new energy range, and has the highest sensitivity to the self-couplings of the Higgs boson and any anomalous couplings. We consider the FCC programme to be the best option to maintain Europes place at the high-energy frontier during the coming decades.
We respond to points raised in the recent discussion note arXiv:1912.13466, Charting the European course to the high-energy frontier, which compares the CLIC and FCC programmes.
The long-term prospect of building a hadron collider around the circumference of a great circle of the Moon is sketched. A Circular Collider on the Moon (CCM) of $sim$11000 km in circumference could reach a proton-proton center-of-mass collision ener
Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spallation Source currently under construction in Lund
Building upon the PDFSense framework developed in Ref. [1], we perform a comprehensive analysis of the sensitivity of present and future high-energy data to a number of quantities commonly evaluated in lattice gauge theory, with a particular focus on
The opportunities which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and lead LHC beams extracted by a bent crystal are outlined. In particular, such an experiment can greatly complement facilities