ﻻ يوجد ملخص باللغة العربية
In spite of enormous theoretical and experimental progresses in quantum uncertainty relations, the experimental investigation of most current, and universal formalism of uncertainty relations, namely majorization uncertainty relations (MURs), has not been implemented yet. A significant problem is that previous studies on the classification of MURs only focus on their mathematical expressions, while the physical difference between various forms remains unknown. First, we use a guessing game formalism to study the MURs, which helps us disclosing their physical nature, and distinguishing the essential differences of physical features between diverse forms of MURs. Second, we tighter the bounds of MURs in terms of flatness processes, or equivalently, in terms of majorization lattice. Third, to benchmark our theoretical results, we experimentally verify MURs in the photonic systems.
We derive and experimentally investigate a strong uncertainty relation valid for any $n$ unitary operators, which implies the standard uncertainty relation as a special case, and which can be written in terms of geometric phases. It is saturated by e
In this paper we provide a new set of uncertainty principles for unitary operators using a sequence of inequalities with the help of the geometric-arithmetic mean inequality. As these inequalities are fine-grained compared with the well-known Cauchy-
Uncertainty relation is not only of fundamental importance to quantum mechanics, but also crucial to the quantum information technology. Recently, majorization formulation of uncertainty relations (MURs) have been widely studied, ranging from two mea
We derive an entropic uncertainty relation for generalized positive-operator-valued measure (POVM) measurements via a direct-sum majorization relation using Schur concavity of entropic quantities in a finite-dimensional Hilbert space. Our approach pr
We prove that a beam splitter, one of the most common optical components, fulfills several classes of majorization relations, which govern the amount of quantum entanglement that it can generate. First, we show that the state resulting from k photons