ﻻ يوجد ملخص باللغة العربية
A compact space $X$ is said to be minimal if there exists a map $f:Xto X$ such that the forward orbit of any point is dense in $X$. We consider rigid minimal spaces, motivated by recent results of Downarowicz, Snoha, and Tywoniuk [J. Dyn. Diff. Eq., 2016] on spaces with cyclic group of homeomorphisms generated by a minimal homeomorphism, and results of the first author, Clark and Oprocha [ Adv. Math., 2018] on spaces in which the square of every homeomorphism is a power of the same minimal homeomorphism. We show that the two classes do not coincide, which gives rise to a new class of spaces that admit minimal homeomorphisms, but no minimal maps. We modify the latter class of examples to show for the first time the existence of minimal spaces with degenerate homeomorphism groups. Finally, we give a method of constructing decomposable compact and connected spaces with cyclic group of homeomorphisms, generated by a minimal homeomorphism, answering a question in Downarowicz et al.
We show that group actions on many treelike compact spaces are not too complicated dynamically. We first observe that an old argument of Seidler implies that every action of a topological group $G$ on a regular continuum is null and therefore also ta
For a topological group G, we show that a compact metric G-space is tame if and only if it can be linearly represented on a separable Banach space which does not contain an isomorphic copy of $l_1$ (we call such Banach spaces, Rosenthal spaces). With
The topological method for the reconstruction of dynamics from time series [K. Mischaikow, M. Mrozek, J. Reiss, A. Szymczak. Construction of Symbolic Dynamics from Experimental Time Series, Physical Review Letters, 82 (1999), 1144-1147] is reshaped t
If phi is a Pisot substitution of degree d, then the inflation and substitution homeomorphism Phi on the tiling space T_Phi factors via geometric realization onto a d-dimensional solenoid. Under this realization, the collection of Phi-periodic asympt
We investigate the classical Alexandroff-Borsuk problem in the category of non-triangulable manifolds: Given an $n$-dimensional compact non-triangulable manifold $M^n$ and $varepsilon > 0$, does there exist an $varepsilon$-map of $M^n$ onto an $n$-di