ﻻ يوجد ملخص باللغة العربية
Whenever a quantum system undergoes a cycle governed by a slow change of parameters, it acquires a phase factor: the geometric phase. Its most common formulations are known as the Aharonov-Bohm, Pancharatnam and Berry phases, but both prior and later manifestations exist. Though traditionally attributed to the foundations of quantum mechanics, the geometric phase has been generalized and became increasingly influential in many areas from condensed-matter physics and optics to high energy and particle physics and from fluid mechanics to gravity and cosmology. Interestingly, the geometric phase also offers unique opportunities for quantum information and computation. In this Review we first introduce the Aharonov-Bohm effect as an important realization of the geometric phase. Then we discuss in detail the broader meaning, consequences and realizations of the geometric phase emphasizing the most important mathematical methods and experimental techniques used in the study of geometric phase, in particular those related to recent works in optics and condensed-matter physics.
The geometric phase acquired by an electron in a one-dimensional periodic lattice due to weak electric perturbation is found and referred to as the Pancharatnam-Zak phase. The underlying mathematical structure responsible for this phase is unveiled.
We propose an experiment that would produce and measure a large Aharonov-Casher (A-C) phase in a solid-state system under macroscopic motion. A diamond crystal is mounted on a spinning disk in the presence of a uniform electric field. Internal magnet
By example of the nonlinear Kerr-mode driven by a laser, we show that hysteresis phenomena in systems featuring a driven-dissipative phase transition (DPT) can be accurately described in terms of just two collective, dissipative Liouvillian eigenmode
The working principle of ordinary refractive lenses can be explained in terms of the space-variant optical phase retardations they introduce, which reshape the optical wavefront curvature and hence affect the subsequent light propagation. These phase
The interplay of $pi$-flux and lattice geometry can yield full localization of quantum dynamics in lattice systems, a striking interference phenomenon known as Aharonov-Bohm caging. At the level of the single-particle energy spectrum, this full-local