ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep-learning Architecture for Short-term Passenger Flow Forecasting in Urban Rail Transit

269   0   0.0 ( 0 )
 نشر من قبل Jinlei Zhang
 تاريخ النشر 2019
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Short-term passenger flow forecasting is an essential component in urban rail transit operation. Emerging deep learning models provide good insight into improving prediction precision. Therefore, we propose a deep learning architecture combining the residual network (ResNet), graph convolutional network (GCN), and long short-term memory (LSTM) (called ResLSTM) to forecast short-term passenger flow in urban rail transit on a network scale. First, improved methodologies of the ResNet, GCN, and attention LSTM models are presented. Then, the model architecture is proposed, wherein ResNet is used to capture deep abstract spatial correlations between subway stations, GCN is applied to extract network topology information, and attention LSTM is used to extract temporal correlations. The model architecture includes four branches for inflow, outflow, graph-network topology, as well as weather conditions and air quality. To the best of our knowledge, this is the first time that air-quality indicators have been taken into account, and their influences on prediction precision quantified. Finally, ResLSTM is applied to the Beijing subway using three time granularities (10, 15, and 30 min) to conduct short-term passenger flow forecasting. A comparison of the prediction performance of ResLSTM with those of many state-of-the-art models illustrates the advantages and robustness of ResLSTM. Moreover, a comparison of the prediction precisions obtained for time granularities of 10, 15, and 30 min indicates that prediction precision increases with increasing time granularity. This study can provide subway operators with insight into short-term passenger flow forecasting by leveraging deep learning models.

قيم البحث

اقرأ أيضاً

Short-term passenger flow forecasting is a crucial task for urban rail transit operations. Emerging deep-learning technologies have become effective methods used to overcome this problem. In this study, the authors propose a deep-learning architectur e called Conv-GCN that combines a graph convolutional network (GCN) and a three-dimensional (3D) convolutional neural network (3D CNN). First, they introduce a multi-graph GCN to deal with three inflow and outflow patterns (recent, daily, and weekly) separately. Multi-graph GCN networks can capture spatiotemporal correlations and topological information within the entire network. A 3D CNN is then applied to deeply integrate the inflow and outflow information. High-level spatiotemporal features between different inflow and outflow patterns and between stations that are nearby and far away can be extracted by 3D CNN. Finally, a fully connected layer is used to output results. The Conv-GCN model is evaluated on smart card data of the Beijing subway under the time interval of 10, 15, and 30 min. Results show that this model yields the best performance compared with seven other models. In terms of the root-mean-square errors, the performances under three time intervals have been improved by 9.402, 7.756, and 9.256%, respectively. This study can provide critical insights for subway operators to optimise urban rail transit operations.
This paper proposes a macroscopic model to describe the equilibrium distribution of passenger arrivals for the morning commute problem in a congested urban rail transit system. We employ a macroscopic train operation sub-model developed by Seo et al. (2017a,b) to express the interaction between dynamics of passengers and trains in a simplified manner while maintaining their essential physical relations. We derive the equilibrium conditions of the proposed model and discuss the existence of equilibrium. The characteristics of the equilibrium are then examined through numerical examples under different passenger demand settings. As an application of the proposed model, we finally analyze a simple time-dependent timetable optimization problem with equilibrium constraints and show that there exists a capacity increasing paradox in which a higher dispatch frequency can increase the equilibrium cost. Further insights into the design of the timetable and its influence on passengers equilibrium travel costs are also obtained.
Appliance-level load forecasting plays a critical role in residential energy management, besides having significant importance for ancillary services performed by the utilities. In this paper, we propose to use an LSTM-based sequence-to-sequence (seq 2seq) learning model that can capture the load profiles of appliances. We use a real dataset collected fromfour residential buildings and compare our proposed schemewith three other techniques, namely VARMA, Dilated One Dimensional Convolutional Neural Network, and an LSTM model.The results show that the proposed LSTM-based seq2seq model outperforms other techniques in terms of prediction error in most cases.
Accurate short-term load forecasting is essential for efficient operation of the power sector. Predicting load at a fine granularity such as individual households or buildings is challenging due to higher volatility and uncertainty in the load. In ag gregate loads such as at grids level, the inherent stochasticity and fluctuations are averaged-out, the problem becomes substantially easier. We propose an approach for short-term load forecasting at individual consumers (households) level, called Forecasting using Matrix Factorization (FMF). FMF does not use any consumers demographic or activity patterns information. Therefore, it can be applied to any locality with the readily available smart meters and weather data. We perform extensive experiments on three benchmark datasets and demonstrate that FMF significantly outperforms the computationally expensive state-of-the-art methods for this problem. We achieve up to 26.5% and 24.4 % improvement in RMSE over Regression Tree and Support Vector Machine, respectively and up to 36% and 73.2% improvement in MAPE over Random Forest and Long Short-Term Memory neural network, respectively.
A machine learning algorithm is developed to forecast the CO2 emission intensities in electrical power grids in the Danish bidding zone DK2, distinguishing between average and marginal emissions. The analysis was done on data set comprised of a large number (473) of explanatory variables such as power production, demand, import, weather conditions etc. collected from selected neighboring zones. The number was reduced to less than 50 using both LASSO (a penalized linear regression analysis) and a forward feature selection algorithm. Three linear regression models that capture different aspects of the data (non-linearities and coupling of variables etc.) were created and combined into a final model using Softmax weighted average. Cross-validation is performed for debiasing and autoregressive moving average model (ARIMA) implemented to correct the residuals, making the final model the variant with exogenous inputs (ARIMAX). The forecasts with the corresponding uncertainties are given for two time horizons, below and above six hours. Marginal emissions came up independent of any conditions in the DK2 zone, suggesting that the marginal generators are located in the neighbouring zones. The developed methodology can be applied to any bidding zone in the European electricity network without requiring detailed knowledge about the zone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا