ترغب بنشر مسار تعليمي؟ اضغط هنا

New estimates of maximal Bochner-Riesz operator in the plane

106   0   0.0 ( 0 )
 نشر من قبل Xiaochun Li
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove some new $L^p$ estimates for maximal Bochner-Riesz operator in the plane.



قيم البحث

اقرأ أيضاً

For $ 0< lambda < frac{1}2$, let $ B_{lambda }$ be the Bochner-Riesz multiplier of index $ lambda $ on the plane. Associated to this multiplier is the critical index $1 < p_lambda = frac{4} {3+2 lambda } < frac{4}3$. We prove a sparse bound for $ B_{ lambda }$ with indices $ (p_lambda , q)$, where $ p_lambda < q < 4$. This is a further quantification of the endpoint weak $L^{p_lambda}$ boundedness of $ B_{lambda }$, due to Seeger. Indeed, the sparse bound immediately implies new endpoint weighted weak type estimates for weights in $ A_1 cap RH_{rho }$, where $ rho > frac4 {4 - 3 p_{lambda }}$.
We show that the recent techniques developed to study the Fourier restriction problem apply equally well to the Bochner-Riesz problem. This is achieved via applying a pseudo-conformal transformation and a two-parameter induction-on-scales argument. A s a consequence, we improve the Bochner-Riesz problem to the best known range of the Fourier restriction problem in all high dimensions.
137 - Xudong Lai 2021
In this paper, we establish the full $L_p$ boundedness of noncommutative Bochner-Riesz means on two-dimensional quantum tori, which completely resolves an open problem raised in cite{CXY13} in the sense of the $L_p$ convergence for two dimensions. Th e main ingredients are sharper estimates of noncommutative Kakeya maximal functions and geometric estimates in the plain. We make the most of noncommutative theories of maximal/square functions, together with microlocal decompositions in both proofs of sharper estimates of Kakeya maximal functions and Bochner-Riesz means. We point out that even geometric estimates in the plain are different from that in the commutative case.
Let $mathsf M_{mathsf S}$ denote the strong maximal operator on $mathbb R^n$ and let $w$ be a non-negative, locally integrable function. For $alphain(0,1)$ we define the weighted sharp Tauberian constant $mathsf C_{mathsf S}$ associated with $mathsf M_{mathsf S}$ by $$ mathsf C_{mathsf S} (alpha):= sup_{substack {Esubset mathbb R^n 0<w(E)<+infty}}frac{1}{w(E)}w({xinmathbb R^n:, mathsf M_{mathsf S}(mathbf{1}_E)(x)>alpha}). $$ We show that $lim_{alphato 1^-} mathsf C_{mathsf S} (alpha)=1$ if and only if $win A_infty ^*$, that is if and only if $w$ is a strong Muckenhoupt weight. This is quantified by the estimate $mathsf C_{mathsf S}(alpha)-1lesssim_{n} (1-alpha)^{(cn [w]_{A_infty ^*})^{-1}}$ as $alphato 1^-$, where $c>0$ is a numerical constant; this estimate is sharp in the sense that the exponent $1/(cn[w]_{A_infty ^*})$ can not be improved in terms of $[w]_{A_infty ^*}$. As corollaries, we obtain a sharp reverse Holder inequality for strong Muckenhoupt weights in $mathbb R^n$ as well as a quantitative imbedding of $A_infty^*$ into $A_{p}^*$. We also consider the strong maximal operator on $mathbb R^n$ associated with the weight $w$ and denoted by $mathsf M_{mathsf S} ^w$. In this case the corresponding sharp Tauberian constant $mathsf C_{mathsf S} ^w$ is defined by $$ mathsf C_{mathsf S} ^w alpha) := sup_{substack {Esubset mathbb R^n 0<w(E)<+infty}}frac{1}{w(E)}w({xinmathbb R^n:, mathsf M_{mathsf S} ^w (mathbf{1}_E)(x)>alpha}).$$ We show that there exists some constant $c_{w,n}>0$ depending only on $w$ and the dimension $n$ such that $mathsf C_{mathsf S} ^w (alpha)-1 lesssim_{w,n} (1-alpha)^{c_{w,n}}$ as $alphato 1^-$ whenever $win A_infty ^*$ is a strong Muckenhoupt weight.
In this paper we consider $L^p$ boundedness of some commutators of Riesz transforms associated to Schr{o}dinger operator $P=-Delta+V(x)$ on $mathbb{R}^n, ngeq 3$. We assume that $V(x)$ is non-zero, nonnegative, and belongs to $B_q$ for some $q geq n/ 2$. Let $T_1=(-Delta+V)^{-1}V, T_2=(-Delta+V)^{-1/2}V^{1/2}$ and $T_3=(-Delta+V)^{-1/2} abla$. We obtain that $[b,T_j] (j=1,2,3)$ are bounded operators on $L^p(mathbb{R}^n)$ when $p$ ranges in a interval, where $b in mathbf{BMO}(mathbb{R}^n)$. Note that the kernel of $T_j (j=1,2,3)$ has no smoothness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا