ﻻ يوجد ملخص باللغة العربية
Consider a non-relativistic quantum particle with wave function inside a region $Omegasubset mathbb{R}^3$, and suppose that detectors are placed along the boundary $partial Omega$. The question how to compute the probability distribution of the time at which the detector surface registers the particle boils down to finding a reasonable mathematical definition of an ideal detecting surface; a particularly convincing definition, called the absorbing boundary rule, involves a time evolution for the particles wave function $psi$ expressed by a Schrodinger equation in $Omega$ together with an absorbing boundary condition on $partial Omega$ first considered by Werner in 1987, viz., $partial psi/partial n=ikappapsi$ with $kappa>0$ and $partial/partial n$ the normal derivative. We provide here a discussion of the rigorous mathematical foundation of this rule. First, for the viability of the rule it plays a crucial role that these two equations together uniquely define the time evolution of $psi$; we point out here how the Hille-Yosida theorem implies that the time evolution is well defined and given by a contraction semigroup. Second, we show that the collapse required for the $N$-particle version of the problem is well defined. Finally, we also prove analogous results for the Dirac equation.
In this paper an exact transparent boundary condition (TBC) for the multidimensional Schrodinger equation in a hyperrectangular computational domain is proposed. It is derived as a generalization of exact transparent boundary conditions for 2D and 3D
The scalar products, form factors and correlation functions of the XXZ spin chain with twisted (or antiperiodic) boundary condition are obtained based on the inhomogeneous $T-Q$ relation and the Bethe states constructed via the off-diagonal Bethe Ans
The exact solution of an integrable anisotropic Heisenberg spin chain with nearest-neighbour, next-nearest-neighbour and scalar chirality couplings is studied, where the boundary condition is the antiperiodic one. The detailed construction of Hamilto
This paper contains a set of lecture notes on manifolds with boundary and corners, with particular attention to the space of quantum states. A geometrically inspired way of dealing with these kind of manifolds is presented,and explicit examples are g
Analytical solutions of the Schrodinger equation are obtained for some diatomic molecular potentials with any angular momentum. The energy eigenvalues and wave functions are calculated exactly. The asymptotic form of the equation is also considered. Algebraic method is used in the calculations.