ﻻ يوجد ملخص باللغة العربية
We report the inverse Laplace transform (ILT) analysis of the $^{139}$La nuclear spin-lattice relaxation rate $1/T_1$ in charge ordered La$_{1.885}$Sr$_{0.115}$CuO$_4$ ($T_{charge} sim 80$K, $T_{c} simeq T_{spin}^{neutron}=30$K), and shed new light on its magnetic inhomogeneity. We deduce the probability density function $P(1/T_{1})$ of the distributed $1/T_1$ (i.e. the histogram of distributed $1/T_1$) by taking the inverse Laplace transform of the experimentally observed nuclear magnetization recovery curve $M(t)$. We demonstrate that spin freezing sets in in some domains precisely below the onset of charge order at $T_{charge}$, but their volume fraction grows only gradually toward $T_{c}$. Nearly a half of the sample volume exhibits properties expected for canonical high $T_c$ cuprates without charge order even near $T_c$. Our findings explain why charge order does not suppress $T_c$ of La$_{1.885}$Sr$_{0.115}$CuO$_4$ as significantly as in La$_{1.875}$Ba$_{0.125}$CuO$_4$.
The presence of charge and spin stripe order in the La2CuO4-based family of superconductors continues to lead to new insight on the unusual ground state properties of high Tc cuprates. Soon after the discovery of charge stripe order at T(charge)=65K
We present results of magnetic neutron diffraction experiments on the co-doped super-oxygenated La(2-x)Sr(x)CuO(4+y) (LSCO+O) system with x=0.09. The spin-density wave has been studied and we find long-range incommensurate antiferromagnetic order bel
By using new and previous measurements of the $ab$-plane conductivity $sigma_1^{ab} (omega,T)$ of La$_{2-x}$Sr$_x$CuO$_{4}$ (LSCO) it is shown that the spectral weight $W = int_0^Omega {sigma_1^{ab} (omega,T) domega}$ obeys the same law $W = W_0 - B(
We show that disruption of charge-density-wave (stripe) order by charge transfer excitation, enhances the superconducting phase rigidity in La_{1.885}Ba_{0.115}CuO_4 (LBCO). Time-Resolved Resonant Soft X-Ray Diffraction demonstrates that charge order
We investigate the hole and lattice dynamics in a prototypical high temperature superconducting system La{2-x}Sr{x}CuO{4} using infrared spectroscopy. By exploring the anisotropy in the electronic response of CuO2 planes we show that our results supp