ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuous-variable quantum cryptography with discrete alphabets: Composable security under collective Gaussian attacks

146   0   0.0 ( 0 )
 نشر من قبل Panagiotis Papanastasiou
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider continuous-variable quantum key distribution with discrete-alphabet encodings. In particular, we study protocols where information is encoded in the phase of displaced coherent (or thermal) states, even though the results can be directly extended to any protocol based on finite constellations of displaced Gaussian states. In this setting, we provide a composable security analysis in the finite-size regime assuming the realistic but restrictive hypothesis of collective Gaussian attacks. Under this assumption, we can efficiently estimate the parameters of the channel via maximum likelihood estimators and bound the corresponding error in the final secret key rate.



قيم البحث

اقرأ أيضاً

We investigate the performance of Gaussianmodulated coherent-state QKD protocols in the presence of canonical attacks, which are collective Gaussian attacks resulting in Gaussian channels described by one of the possible canonical forms. We present a symptotic key rates and then we extend the results to the finite-size regime using a recently-developed toolbox for composable security.
99 - Nathan Walk , Jens Eisert 2021
Secret sharing is a multi-party cryptographic primitive that can be applied to a network of partially distrustful parties for encrypting data that is both sensitive (it must remain secure) and important (it must not be lost or destroyed). When sharin g classical secrets (as opposed to quantum states), one can distinguish between protocols that leverage bi-partite quantum key distribution (QKD) and those that exploit multi-partite entanglement. The latter class are known to be vulnerable to so-called participant attacks and, while progress has been made recently, there is currently no analysis that quantifies their performance in the composable, finite-size regime which has become the gold standard for QKD security. Given this -- and the fact that distributing multi-partite entanglement is typically challenging -- one might well ask: Is there is any virtue in pursuing multi-partite entanglement based schemes? Here, we answer this question in the affirmative for a class of secret sharing protocols based on continuous variable graph states. We establish security in a composable framework and identify a network topology, specifically a bottleneck network of lossy channels, and parameter regimes within the reach of present day experiments for which a multi-partite scheme outperforms the corresponding QKD based method in the asymptotic and finite-size setting. Finally, we establish experimental parameters where the multi-partite schemes outperform any possible QKD based protocol. This one of the first concrete compelling examples of multi-partite entangled resources achieving a genuine advantage over point-to-point protocols for quantum communication and represents a rigorous, operational benchmark to assess the usefulness of such resources.
We derive a bound for the security of QKD with finite resources under one-way post-processing, based on a definition of security that is composable and has an operational meaning. While our proof relies on the assumption of collective attacks, uncond itional security follows immediately for standard protocols like Bennett-Brassard 1984 and six-states. For single-qubit implementations of such protocols, we find that the secret key rate becomes positive when at least Nsim 10^5 signals are exchanged and processed. For any other discrete-variable protocol, unconditional security can be obtained using the exponential de Finetti theorem, but the additional overhead leads to very pessimistic estimates.
97 - Eneet Kaur , Saikat Guha , 2019
We consider discrete-modulation protocols for continuous-variable quantum key distribution (CV-QKD) that employ a modulation constellation consisting of a finite number of coherent states and that use a homodyne or a heterodyne-detection receiver. We establish a security proof for collective attacks in the asymptotic regime, and we provide a formula for an achievable secret-key rate. Previous works established security proofs for discrete-modulation CV-QKD protocols that use two or three coherent states. The main constituents of our approach include approximating a complex, isotropic Gaussian probability distribution by a finite-size Gauss-Hermite constellation, applying entropic continuity bounds, and leveraging previous security proofs for Gaussian-modulation protocols. As an application of our method, we calculate secret-key rates achievable over a lossy thermal bosonic channel. We show that the rates for discrete-modulation protocols approach the rates achieved by a Gaussian-modulation protocol as the constellation size is increased. For pure-loss channels, our results indicate that in the high-loss regime and for sufficiently large constellation size, the achievable key rates scale optimally, i.e., proportional to the channels transmissivity.
In this thesis we study the finite-size analysis of two continuous-variables quantum key distribution schemes. The first one is the one-way protocol using Gaussian modulation of thermal states and the other is the measurement-device-independent proto col. To do so, we adopt an efficient channel parameter estimation method based on the assumption of the Gaussian variables and the central limit theorem introduced by Ruppert et al. [Phys. Rev. A 90, 062310 (2014)]. Furthermore, we present a composable security analysis of the measurement device independent protocol for coherent attacks with a channel parameter estimation that is not based on the central limit theorem. We also investigated, in the asymptotic regime, an asymmetric situation for the authenticated parties against the eavesdropper caused by fast-fading channels. Here we assume that the eavesdropper has the full control of the communication channel and can instantaneously change its transmissivity in every use of it. We assumed the simple model of a uniform fading and addressed the cases of one-way protocols, continuous-measurement device-independent protocol in symmetric configuration and its star network extension for three users. Finally, we extended the asymptotic study of the one-way protocols using an arbitrary number of phase-encoded coherent states assuming a thermal loss channel without using a Gaussian approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا